

RENATE WIESER

THE WORK OF ART IN THE AGE
OF THE UNIVERSAL MACHINE.

INTRODUCING AMY ALEXANDER AND CARMIN KARASIC

This section serves as an introduction to the two articles which follow, both
contextualizing an art installation. They are each written by an artist involved
in their making. It is my concern to show why these artworks are particularly
interesting for the study of automatisms. Just like a scientific paper, an art-
work, understood as an investigation, questions an interrelation between per-
ception and technique. With their art, their statements and their writings, the
artists contribute to research, and thus bring awareness to their tools and
methods as well as to the social and political context of their work.

Amy Alexander and Carmin Karasic combine their programming skills
with the specific methods and modes of expression of the art context. In their
contribution they each give insight into an interactive installation which al-
ludes to political discourse with a sense of humor. Amy Alexander reinvesti-
gates her project SVEN1 (Surveillance Video Entertainment Network), which
contextualizes software for automated surveillance in new ways. Carmin
Karasic introduces SjansMachine, an installation that relocates social software
from the world wide web into a local network which operates in an actual
room with people able to meet in flesh and blood.

The code employed creates a familiar environment for the visitors of the in-
stallation. They recognize it on account of the ubiquity of computer based
technology in everyday life. But it also differs from the familiarity we find in
other spheres of daily routines. Unlike hardware, software is immaterial and
based on a complex set of rules, normally hidden behind a user interface, a
cover that creates the impression of a self-contained commodity – especially if
we look at market-leading products, predominating in certain sectors. Conse-
quently, what customers buy are not goods, representing solidified labor and
concepts, but a set of digital instructions still open to improvement and muta-
tion.2 One could say that this mutational character is camouflaged by the ap-

1 The article develops further and reconsiders former trains of thought. See Amy Alexander,

“About... Software, Surveillance, Scariness, Subjectivity (and SVEN)”, in: Transdisciplinary
Digital Art. Sound, Vision and the New Screen, ed. by Randy Adams, Steve Gibson and
Stefan Müller Arisona, Berlin, 2008, pp. 467-475.

2 Still we deal here with commodities and it is important not to confuse de-materialization with
de-commodification, as Rancière argues in: id., “Von der Aktualität des Kommunismus zu

RENATE WIESER 60

parent solidity of the graphical user interface, where every change is labeled as
software update, preventing the users from knowing in detail what changes are
going to happen and how deeply they will change the products in use. The
process of software development is far more complex than that of most of our
daily goods, in the sense that the developers design and regulate the interactive
potential of the device step by step. All these regulations influence the usage
of software we own, or have access to in all kinds of situations, and which de-
termines our way of life. Thus it is a plausible diagnosis that programming as
an activity is something like a blind spot in the everyday use of software and
computers.

Daily routines of individuals as well as those of social and political rela-
tions are structured by software. The research group Automatisms at the Uni-
versity of Paderborn is mainly interested in those routines which are neither
planned nor programmed, and which are not the result of a willful action. It
explores processes that largely elude conscious control. Behavior that grows
into a habit, rooted not so much in the compliance with regulations but in
repetition, with an arbitrary side to it. Automatisms can be experienced as
something mechanical, but they are, by definition, not describable as technical
automata.3 No matter how complex technical automata are, there has to be a
set of rules which the processes and their outcomes can be reduced to. Au-
tomatisms, even though they result in schemata, can’t be reduced to such a
constitutive policy. In differentiating automatisms from automation, a differ-
ence is made between two very similar concepts – using the notion of automa-
tisms in conjunction with computer technology therefore calls for further dis-
tinctions.

Even though programs are sets of instructions, their effective character in a
given situation can neither be completely described by making those instruc-
tions explicit, nor by referring to the conscious act on the side of the pro-
grammer. Certainly any considerable deviation from the set of rules of a given
computer language will cause an error, which is one of the reasons why a pro-
gram remains within the bounds of computability. This by no means implies,
however, that programming is an entirely transparent and determinable proce-
dure. Habits of programmers, their state of knowledge, their reuse of existing
code (or even copy and paste programming) and the influence of conventions
determine the social influence of software to a considerable degree, just as
much as the habits and comprehension of its users do. The concept of automa-
tisms is particularly beneficial for understanding this situation.

Daily routines, like communicating via email, doing a bank transfer at an
ATM or creating an invitation card, are fundamentally determined by soft-

seiner Inaktualität”, in: Indeterminate Kommunismus! Texte zu Ökonomie, Politik und Kultur,
ed. by DemoPunK | Kritik und Praxis Berlin, Münster, 2005, pp. 23-30: 25.

3 Hannelore Bublitz/Roman Marek/Christina Louise Steinmann/Hartmut Winkler, “Einleitung”,
in: id., eds., Automatismen, Paderborn, 2010, pp. 9-16: 11.

THE WORK OF ART IN THE AGE OF THE UNIVERSAL MACHINE

61

ware. How could one discriminate which stages of such routines originate in
the repetition of habituated usage and which are determined through the func-
tionality of the software itself? In order to understand how the world has
changed through the proliferation of personal computers, it is crucial, but also
very difficult, to discriminate between two aspects: habitual behavior in the
development and use of software (automatisms) on the one hand, and the
processes determined by the automatization through technology on the other.
This task is further complicated by the fact that to many people computer pro-
grams are completely familiar, but their source code remains alien.

The study of automatisms involves making visible what normally eludes
conscious control. It is useful here to discuss an early concept of dealing with
this task that can be found in art theory. When Viktor Shklovsky coined the
term “ostranenie”4, or defamiliarization, he discovered strategies that some
artists use to bring awareness to automatisms through their work. In this con-
text, he also defined automatisms:

If we start to examine the general laws of perception, we see that as perception
becomes habitual, it becomes automatic. Thus for example, all of our habits re-
treat into the area of the unconsciously automatic; if one remembers the sensa-
tion of holding a pen or of speaking in a foreign language for the first time and
compares that with the feeling at performing the action for the ten thousandth
time, he will agree with us.5

And some pages further:

After we see an object several times, we begin to recognize it. The object is in
front of us and we know about it, but we do not see it hence we can not say any-
thing significant about it. Art removes objects from the automatism of perception
in several ways.6

The examples used by Shklovsky come from literature, but the concept of os-
tranenie is discussed in a wide range of art contexts. He discovered an aspect
addressed by art which at that time couldn’t be subsumed under existing aes-
thetic theories. If art doesn’t serve mimetic or educational purposes, if it alien-
ates rather than trying to improve humanity, what is its raison d’être? The fact
that it expressed an aspect which didn’t coincide with the humanist belief in
progress was an important reason why ostranenie became one of the central
concepts in 20th century art theory. In Tolstoi’s writing, Shklovsky saw tech-
niques of bringing blanketed perceptions again to awareness. Within art he
found ways of not only exploring automatisms, but also of exposing them to
the readers’ understanding. In his view, art had an essential function in creat-

4 Was first coined in 1917 in Victor Shklovsky, “Art as Technique”, in: Russian Formalist

Criticism. Four Essays, ed. by Lee T. Lemon and Marion Reis, Lincoln, NE, 1965, pp. 5-
24: 12.

5 Ibid., p. 11.
6 Ibid., p. 13.

RENATE WIESER 62

ing a new perception of something known by defamiliarizing it, for instance
by treating an everyday act or object as if it were something alien.7

Shklovsky developed his ideas with respect to literature, differentiating un-
ambiguously between poetic and everyday language.8 All the hidden troubles
of differentiating between purposive and poetic language became a central
concern for 20th century philosophy, with authors like Derrida, Lyotard, or
Kristeva.9 Here, language plays an important role in the formation of automa-
tized structures, as much as it provides the means to deautomatize them.
Against this background, we can ask questions about the relation between
natural and machine language. Because a programming language is, by itself,
entirely rule-based, including source code, and taking into consideration au-
tomatisms and the artistic techniques that make them visible, we may eluci-
date the contrast between the purposive and the poetic.

Soon after the developments of the first computers, the universal machine
was discovered as a tool for artistic research as well as for research about art.
Well known artworks, for example by Mondrian or Klee, were recreated using
programming languages.10 From the early days on, it has been claimed that a
computer program is capable of producing a poem or even a whole novel, a
claim that has been emphatically discussed ever since.11 As an aspect of artifi-
cial intelligence, the dreams and fantasies of machines creating art mush-
roomed with the proliferation of the computer. In the context of such devel-
opments, to differentiate between automatisms, automats and artistic working
methods becomes crucial for the understanding of changing techno-social de-

7 Ibid., p. 21.
8 Ibid., p. 10. The first quote continues: “Such habituation explains the principles by which, in

ordinary speech, we leave phrases unfinished and words half expressed.” (Ibid., p. 11.)
9 As these pages only serve as a short introduction, there is clearly not more space for more

than a hint at some theoretical threads one should mention in this context. Certainly, one
should think of the so called semiotic or linguistic turn. This discourse was extremely influ-
ential, just as much as it has been claimed dead by some recent authors (e.g. cf. Karen Barad,
Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Mean-
ing, Durham, NC, 2007, pp. 132 et seqq.) Also one could trace some motives back to the
roots of philosophical aesthetics, as Lyotard tries to do (Jean-François Lyotard, The Inhuman:
Reflections on Time, Cambridge et al., 1991. pp. 71 et seqq.). Kristeva discussed the term po-
etic language comparing it with formalized, mathematized concepts of language (Julia
Kristeva, The Revolution in Poetic Language, New York, NY, 1984, p. 21). Dosse describes
Kristeva’s first and influential encounter with Barthes. She introduced her concepts as “drawn
from Russian postformalism and based on the work of Mikhail Bakhtin.” (François Dosse,
History of Structuralism: The Sign Sets, Volume 2, Minneapolis, MI, 1997, p. 54.) Those
sources may serve as an entry point for analyzing the conceptual development in terms of a
discourse circling around the question of the relation between poetic and purposive language.

10 E.g. Noll recreated Mondrians “Composition With Lines“ and showed it, among other exhibi-
tions, at “Cybernetic Serendipity”. A. Michael Noll, “A Subjective Comparison of Piet Mon-
drian’s ‘Composition with Lines’ 1917”, in: Jasia Reichardt, ed., Cybernetic Serendipity: The
Computer and the Arts, London, New York, NY, 1969, p. 74.

11 E.g. Douglas Hofstadter, Fluid Concepts and Creative Analogies: Computer Models of the
Fundamental Mechanisms of Thought, New York, NY, 1996, pp. 155-168.

THE WORK OF ART IN THE AGE OF THE UNIVERSAL MACHINE

63

velopments. Code shares many properties with natural language and illustrates
both its automatized character, as well as the impossibility to fully automate it.
An artwork can be an investigation into this ambiguous relation.

In this context, a very direct parallel can be found between the technique
Shklovsky finds in Tolstoi’s writings and the so called codeworks. This genre
came into being at the turn of the century and involves a mixing of literary
writing with writing code of computer languages. Various artists experimented
with this kind of poetry. It is plausible that such a literary work is able to
change the usual perception of code. In such texts, one cannot focus on func-
tionality in the usual way, as the poem doesn’t function as computer program.
As a poem, it wants the reader to examine the character of programming lan-
guage apart from its computational functionality.12

Another parallel that is worth mentioning here can be found in live coding13,
an art form that dispenses code from its hiding place and exposes it to the pub-
lic. While an artist is programming in real time, creating the music for an au-
dience, which may or may not dance to it14, the content of the computer screen
is projected onto a wall (instead of the more commonly used animated and
animating graphic displays).15 This may merely serve as a means to convey in-
formation between the performers. But it also functions in a way that re-
sembles Shklovsky’s concept of art as a method to create a renewed percep-
tion of its object. In the present case however, the artistic use of programming
language does not only serve to question commercial or governmental com-
puter technology. It rather takes this technology out of its habitual context in
order to create a new one for it.

In these two art forms, the public display of texts in a computer language
can be considered an investigation into the role and influence of computer
technology in general. But programming may also be used to create an art-
work which reminds us of very common and familiar software. In such cases,
the focus is more on software as a designed and preconfigured commodity,
which changes or even determines individual, social, and political processes.
The contributions by Amy Alexander and Carmin Karasic which follow, can
be read in this light. Accordingly, I shall briefly mention the central concepts
concerning automatisms which the two installations address.

12 There is a short extract of a codework in Speaking Code. Cox writes: “Harwood’s codework

Class Library (2008) plays on these inherent antagonisms (involved in working with code,
R. W.), along with the double coding of the term ‘class’.” Geoff Cox, Speaking Code: Coding
as Aesthetic and Political Expression, Cambridge, MA, et al., 2012, p. 40.

13 http://toplap.org/, last downloaded 2014-01-01.
14 Alex Mclean, “Hacking Perl in Nightclubs”, on: perl.com, 2004: http://www.perl.com/pub/

2004/08/31/livecode.html, last downloaded 2014-01-01.
15 Ward, Adrian/Rohrhuber, Julian/Olofsson, Fredrik/McLean, Alex/Griffiths, Dave/Collins, Nick

and Alexander, Amy, “Live Algorithm Programming and a Temporary Organisation for Its
Promotion”, in: Proceedings of the README Software Art Conference, 2004: http://top
lap.org/wiki/Read_me_paper, last downloaded 2014-01-01.

RENATE WIESER 64

Carmin Karasic describes an installation that can be understood as a de-
familiarization of social software. She brings concepts into play that allow us
to reason about automatized behaviors and schemata of perceiving others. So-
cial media brought along many new ways of getting to know people and keep-
ing in contact, social habits have been transformed, along with the terms and
expressions used in social contexts. It is not always easy to decide whether the
way of using these tools is due to personal preferences, social formations, or
just the preconfigured options of the software.

Amy Alexander writes about an installation that deals with surveillance
technology. The software described in the article was created by a group of
artists she was part of. It operates by means of face recognition and the tracing
of movements. To create such a software, one has to formalize the knowledge
about the perception one considers to be common to different social groups. In
such an application, stereotyping is probably the only possible form to do so.
Finally, two other important aspects are addressed in this work as well as in
Alexander’s paper: computer literacy and the conventions of popular culture.
Both raise questions about automatisms and the unequal access to the techni-
cal background which determines the user’s behavior as well as her interest.

Both installations explore habitualized and automatized use of software.
They are interactive not so much in order to empower the visitor to take an ac-
tive part in the installation, but to alienate or defamiliarize daily routines. Rou-
tines that have accumulated and developed quickly in the last decades. The
following articles make a significant contribution to the understanding of au-
tomatisms: discussing the installations after the lecture the two artists gave in
Paderborn helped us to defamiliarize our own research objects.

Literature

Alexander, Amy, “About... Software, Surveillance, Scariness, Subjectivity (and
SVEN)”, in: Transdisciplinary Digital Art. Sound, Vision and the New Screen, ed.
by Randy Adams, Steve Gibson and Stefan Müller Arisona, Berlin, 2008, pp. 467-
475.

Barad, Karen, Meeting the Universe Halfway: Quantum Physics and the Entanglement
of Matter and Meaning, Durham, NC, 2007.

Bublitz, Hannelore/Marek, Roman/Steinmann, Christina Louise/Winkler, Hartmut,
“Einleitung”, in: id., eds., Automatismen, Paderborn, 2010, pp. 9-16.

Cox, Geoff, Speaking Code: Coding as Aesthetic and Political Expression, Cam-
bridge, MA, et al., 2012.

Dosse, François, History of Structuralism: The Sign Sets, Volume 2, Minneapolis, MI,
1997.

THE WORK OF ART IN THE AGE OF THE UNIVERSAL MACHINE

65

Hofstadter, Douglas, Fluid Concepts and Creative Analogies: Computer Models of the
Fundamental Mechanisms of Thought, New York, NY, 1996.

Kristeva, Julia, The Revolution in Poetic Language, New York, NY, 1984.
Lyotard, Jean-François, The Inhuman: Reflections on Time, Cambridge et al., 1991.
McLean, Alex, “Hacking Perl in Nightclubs”, on: perl.com, 2004: http://www.perl.

com/pub/2004/08/31/livecode.html, last downloaded 2014-01-01.
Noll, A. Michael, “A Subjective Comparison of Piet Mondrian’s ‘Composition with

Lines’ 1917”, in: Jasia Reichardt, ed., Cybernetic Serendipity: The Computer and
the Arts, London, New York, NY, 1969, p. 74.

Rancière, Jacques, “Von der Aktualität des Kommunismus zu seiner Inaktualität”, in:
Indeterminate Kommunismus! Texte zu Ökonomie, Politik und Kultur, ed. by De-
moPunK | Kritik und Praxis Berlin, Münster, 2005, pp. 23-30.

Shklovsky, Victor, “Art as Technique”, in: Russian Formalist Criticism. Four Essays,
ed. by Lee T. Lemon and Marion Reis, Lincoln, NE, 1965, pp. 5-24.

Ward, Adrian et al., “Live Algorithm Programming and a Temporary Organisation for
Its Promotion”, in: Proceedings of the README Software Art Conference, 2004:
http://toplap.org/wiki/Read_me_paper, last downloaded 2014-01-01.

Internet Sources

http://toplap.org

	RENATE WIESER: The work of art in the age of the universal machine

