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Quantum Theory: A 
Media-Archaeological 
Perspective

Arianna Borrelli

Introduction: Computer Simulations as a  
Complement to Quantum Theory?

In this paper I will provide some historical perspectives on the question 
at the core of this workshop, namely the many ways in which computer 
simulations may be contributing to reshape science in general and 
quantum physics in particular. More specifically, I would like to focus on 
the issue of whether computer simulations may be regarded as offering 
an alternative, or perhaps a complementary, version of quantum theory. 
I will not be looking at the way in which computer simulations are used 
in quantum physics today, since this task has been outstandingly fulfilled 
by other contributions to this workshop. Instead, I will present a few 
episodes from the history of quantum theory in such a way as to make it 
plausible that simulations might indeed provide the next phase of historical 
development.

In what sense can computer simulations be regarded as “theories,” though? 
How can a computer simulation be on a par with the Schrödinger equation 
of quantum mechanics? To answer this question I will start by discussing 
(and criticizing) the rather naïve, but very widespread ideal of “theory” that 
dominates much of today’s fundamental physical research, and of which 
quantum mechanics constitutes a paradigmatic example. 
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There is little doubt that quantum mechanics is seen today as an 
epistemically privileged physical-mathematical construct, and this status 
is hardly surprising, because quantum mechanics provides the basis for 
a large number of experimentally successful quantitative predictions. 
However, the predictive efficacy is by far not the only factor supporting 
the authority of quantum mechanics. Of paramount importance is the fact 
that it conforms to an ideal of theory that emerged in the course of the 
nineteenth century and still largely dominates physical research today: 
a “theory” as a coherent, rigorous mathematical construct expressed in 
symbolic formulas from which testable numerical predictions can (at least 
in principle) be derived. Such a construct may then be coupled to a physical 
interpretation expressed in verbal terms, to deliver not only predictions, 
but also explanations of phenomena. As I have discussed at length in other 
publications (Borrelli 2012; 2015a; 2015b), this image of a physical-math-
ematical construct both numerically predicting and verbally explaining 
phenomena is a fundamental template of authority in the physical 
sciences (and often also beyond them), despite the fact that not even long-
established “theories” such as classical mechanics or electromagnetism 
actually conform to it.

Few, if any, mathematical theories can remain coherent and rigorous if they 
also have to provide procedures for actually computing predictions. Even in 
those very rare cases in which an equation like Schrödinger’s can be solved 
exactly, applying the solution to a real-world case always requires adjusting 
it in some way that will make it not any more coherent with the original 
equation. In quantum mechanics the connection of Schrödinger’s equation 
with phenomena is particularly problematic, because in the standard 
Copenhagen interpretation the measurement process is assumed to irre-
versibly change the state of the quantum system. During a measurement, 
in the standard interpretation, a so-called reduction of the wave function 
occurs: the wave function associated with the quantum state immediately 
before the measurement is instantaneously replaced by a different one 
that reflects the outcome of the measurement.1 In other words, there is 
no coherent mathematical structure capable of modeling the process of 
measurement in a quantum system. 

1 On the Copenhagen interpretation of quantum mechanics, the measurement 
problem and the alternative interpretations proposed since the 1950s (see Faye 
2014). It is not my intention to discuss here interpretative issues of quantum 
mechanics, since no satisfactory solution for the measurement problem has been 
found so far, and the Copenhagen interpretation remains the dominating one, at 
least among practicing physicists.
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In general, the image of a theory as a rigorous and coherent mathematical 
construct from which numerical predictions can be derived has little 
or no correspondence in actual research. Yet this image still dominates 
science and endows constructs like the Schrödinger equation with a spe-
cial authority. A key feature of this special status is that, both in today’s 
scientific culture and in the popular imagination, symbolic formulas are 
usually regarded as mere vehicles to convey abstract, disembodied con-
ceptual structures whose features are fully independent from the form in 
which they are expressed. 

In contrast to this view of theoretical knowledge, I believe that theories 
are “abstract” only in the sense of being far removed from everyday 
experience, not in the sense of being “disembodied.” Science is first and 
foremost a collective enterprise, and so no theory can exist that is not 
expressed, communicated, and appropriated by means of some aes-
thetically perceivable form, such as symbols, words, diagrams, three-
dimensional models—and perhaps also computer simulations. Math-
ematical symbols, for example, are obviously visual and, for those who are 
familiar with the rules for manipulating them, they also possess a haptic 
component (Borrelli 2010; Krämer et al. 2012; Velminski and Werner 2010). 
This material and performative dimension of theories does not allow a 
sharp separation of form and content and is an essential factor shaping 
their employment in research practices. To put it in other terms, I would like 
to claim that the dynamics of medium and message apply also to physical 
theories.

Therefore I will now discuss some episodes from the history of quantum 
theory by highlighting the role of the material, performative dimension. 
I will show how, in the early days of quantum theory, the range of forms 
mediating theories was much broader than one might expect. I will argue 
that, if we set aside the ideal of theory as a disembodied construct nec-
essarily manifesting itself only in rigorous mathematical formulas, there 
is little difficulty in considering computer simulations as a medium of 
quantum theory on a par with the many symbolic and diagrammatic con-
structs that were developed in the pioneering years of the discipline. 

Spectroscopy between Arithmetics and Geometry
I begin my overview by considering what is today referred to as “classical 
physics”, that is, the many theories developed or refined over the course of 
the nineteenth century, such as mechanics, electromagnetism, acoustics or 
hydrodynamics. In that context, there was one medium of theory enjoying 
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a very privileged status: differential equations and the functions solving 
them. Differential equations worked very well in delivering numerical 
predictions for a wide range of phenomena, but some areas appeared 
problematic. The experimental field that most decisively contributed to 
the rise of quantum theory was the study of light and its properties, and 
more precisely the phenomena of spectral lines and black-body radiation. 
It was in those contexts that refined differential equations came to be 
replaced by very simple arithmetic formulas as the most effective medium 
to theoretically capture observation. 

Already in the early modern period it had been accepted that white light 
resulted from a superposition of colored rays, and when in the nineteenth 
century the wave theory of light became established, each colored ray 
that could not be further decomposed came to be associated with a wave 
of specific length and frequency. Around 1850 physicists noticed that the 
light produced by igniting different chemical elements was made out of 
different, discrete sets of colors (i.e., wavelengths).2 By the late nineteenth 
century physicists had developed a new research object: “line spectra,” that 
is, the sets of lines produced by decomposing the light emitted by various 
substances. 

 [Fig. 1] Line spectrum of hydrogen (Source: Huggins 1880, 577).

Line spectra such as the one of hydrogen shown in Fig. 1 clearly displayed a 
discontinuous character, with each element emitting light only of specific, 
discrete wavelengths, whose numerical values could be estimated by 
measuring the distance between the lines in the spectrum. The discon-
tinuity of spectra was problematic because if microphysics was ruled by 
differential equations having smooth, continuous solutions, then the light 
emitted should have formed a continuous spectrum—not a discrete one. 

Researchers at the time made various proposals for how to connect the 
experimental results with available theory. One approach often employed 
was to make an analogy between light spectra and acoustic vibrations, 

2 The following overview of the development of spectroscopy and of spectral formula 
is based on Hentschel (2002). For the role of spectroscopy in the development of 
quantum theory see Jammer (1966).
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which had been successfully represented in mathematical form through 
the so-called harmonics (i.e., Fourier series of sine and cosine functions). 
However, such approaches were not very fruitful, and the breakthrough 
occurred only with the proposal of Johann Jakob Balmer (1825–1898), who 
was not a physicist, but a mathematician and an architect, and in particular 
an expert in the field of architectural perspective drawing. Never having 
worked on spectroscopy before, Balmer in 1885 published a short paper 
in which he proposed that the wavelengths of the hydrogen spectral lines 
would conform to the very simple formula: 

 H (m, n)  = h    m   2  ______  m   2  +  n   2    

with H the value of a given wavelength, (m, n) two integer numbers and 
h = 3,645 a constant computed on the basis of measurement (Balmer 
1885, 81, 83). For m = 3, 4 and n = 2 Balmer’s formula fit very well the 
measurements available, and in the following years it turned out that also 
for higher values of m and n the formula matched the wavelengths of newly 
observed hydrogen lines.

How did Balmer, a mathematician and architect who had never shown an 
interest in physics, arrive at his formula? We have no direct sources on 
this issue, but historian and philosopher of science Klaus Hentschel has 
offered a very plausible answer based on an analysis of Balmer’s work and 
of archival material (Hentschel (2002, 295–301, 442–448; Hentschel 2008). 
In his 1885 paper Balmer did not explain how he had arrived at his formula, 
but some years later, in 1897, he again wrote about spectroscopy and 
showed how an improved expression could be derived based on a geomet-
rical construction similar to those employed in architectural perspective 
drawing, in which Balmer was an expert (Balmer 1897). In his 1897 paper 
Balmer explained that the hydrogen wavelengths could be constructed 
geometrically as shown in the right half of Fig. 2.

First one should draw a circle whose diameter AO represents the minimum 
wavelength of hydrogen. Then the points 1, 2, 3... are drawn along the 
X-axis at equal distance from each other. By drawing the tangents to the 
circle passing from points 3, 4, ... and looking where they intersect the 
vertical axis, one obtains the wavelengths of the hydrogen spectrum as the 
distances between point O and the intersection points. This construction 
is the same as that employed to derive the perspective shortening of 
a circular column as seen by an observer walking along the X-axis and 
pausing to look at the column at points 3, 4 … 
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 [Fig. 2] Geometrical derivation of spectroscopic formula (Source: Balmer 1897, plate VIII).

Hentschel argues that this geometrical derivation was similar to the way 
in which Balmer came to his formula in the first place: his experience 
with perspective drawing led him to visually perceive the spectral lines in 
terms of a familiar construction for the shortening of a fluted column. It 
is not possible for me to present here Hentschel’s detailed argument, but 
an important point he makes is that while physicists at the time focused 
on an analogy between light and sound that was expressed in terms of 
frequencies and mathematical functions (harmonics), Balmer worked 
visually and geometrically, and so could open up new paths of reflection. 
Here we see an example of how the employment of different media to 
express the “same” knowledge could lead research in diverging directions. 
For us today Balmer’s symbolic formula represents a physically significant 
result, which prompted the development of quantum theory, while his geo-
metrical reasoning appears to be purely contingent. Yet Balmer saw geo-
metrical methods as a significant guideline in research and, after describing 
the geometrical construction in Fig. 2, he stated:

This construction may possibly be useful in throwing a new light on the 
mysterious phenomena of spectral lines, and in leading to the right 
way of finding the real closed formula for spectral wavelengths, in case 
it has not already been found in the formula of Rydberg. (Balmer 1897, 
209)
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Balmer’s rule for deriving hydrogen spectral wavelengths could be 
expressed both in arithmetical and geometrical terms, but the choice of 
medium had epistemic implications. Balmer’s contemporaries, perhaps 
unsurprisingly, chose the arithmetic formulation, and today the idea of 
using geometrical construction for theoretical guidelines may appear 
very far-fetched. Yet it was probably geometrical reasoning that produced 
Balmer’s formula in the first place and, as we will presently see, theorists 
later developing quantum theory did not shy away from very far-fetched 
constructions expressed in symbolic notation.

By the early twentieth century Balmer’s formula had been developed 
into more general expressions for spectral series, according to which all 
frequencies of light emitted by atoms could be expressed arithmetically as 
the difference between two terms, each depending on a positive integer 
(m, n), on the universal “Rydberg constant” R, and on a number of other 
constants (s, p, d...) depending on the kind of atom.3 The formula looked 
like this:

   ν  (m, n)  =   R ___   (n + s)    2    –   R ___   (m + p)    2     

Such simple formulas could fit practically all the results of atomic spec-
troscopy, a rapidly expanding experimental field at the time. By finding 
the values of the constants s, p etc. on the basis of the first few lines in a 
series, predictions for lines with higher m, n could be obtained, and they 
often turned out to be correct. The fact that the formulas were based on 
integer numbers seemed at first surprising, and some authors at the time 
tried to find a differential equation from which such formulas could be 
derived, but in this early phase the search was to no avail (Hentschel 2012). 
For more than a decade, the formulas for line spectra resisted all attempts 
to embed them in an overarching physical-mathematical framework, or at 
least provide them with a verbal interpretation with explanatory character. 
The formulas remained what I would like to characterize as “mathematical 
fragments,” that is, physical-mathematical expressions which, although 
complete in themselves, stood in isolation from the theoretical landscape 
of their time. Theorists used them as starting points to try and construct 
broader theoretical frameworks, treating them as though they might be 
traces, “fragments” of a (hypothetical) overarching theory that had yet to 
be formulated. 

3 The information contained in the following overview on the development of 
quantum mechanics can be found for example in Jammer (1966). On the role of series 
formulas in the development of quantum theory see also Borrelli (2009; 2010).
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In the early twentieth century spectral series were not the only “math-
ematical fragments” involving natural numbers that played a role in 
microphysics: there was also Planck’s formula for black-body radiation. 
Like Balmer’s formula, Planck’s expression had been derived bottom-
up by matching experimental results in a situation where all top-down 
derivations from electromagnetic theory had failed to provide empirically 
plausible predictions.4 Planck’s formula could be seen as implying that the 
energy exchange between matter and electromagnetic radiation could only 
take place in finite quantities, and that the minimum amount (“quantum”) 
of energy exchanged by matter with light of frequency ν was hν, where h 
was Planck’s constant. 

Bohr’s Atom and the Old Quantum Theory as 
Multimedial Constructs

By the early twentieth century simple arithmetic formulas involving 
positive integer numbers had taken center stage in the search for a theory 
of “quantum” physics, and in 1913 the Danish theorist Niels Bohr (1885–1962) 
combined them with elements from classical physics and verbally formu-
lated physical assumptions to produce “Bohr’s atom,” a very innovative 
theoretical construct.5 

First of all Bohr assumed that the hydrogen atom could be regarded 
as a small solar system governed by a classical differential equation 
defining its possible orbits. Then he introduced a novel physical principle 
expressed verbally: only those orbits having certain particular values of the 
energy were actually realized, because only in them would the atom not 
radiate and would thus remained stable.6 These stable orbits were called 
“stationary states” and, according to Bohr, radiation only occurred when 
the atom “jumped” from one stationary state to another. The energy E lost 
(or gained) by the atom corresponded to the creation (or annihilation) of 
light of frequency ν such that E = hν, as required by Planck’s formula. Each 
of the stationary energy levels was linked to an integer number, chosen so 
as to exactly match one of the two terms in the hydrogen series formula. 

4 The history of the emergence and transformation of Planck’s black-body formula 
has been studied in much detail by many historians and cannot be discussed here. A 
recent overview with further references is Badino (2015).

5 For a recent, exhaustive treatment of Bohr’s atomic model and its development see 
Kragh (2012).

6 The stability of matter was a problem for the solar system atom in classical physics, 
since in classical electromagnetism a moving electron would radiate, lose energy, 
and eventually fall into the nucleus.



Quantum Theory 103

Since all spectral series formulas were differences between two similar 
terms, they could all be interpreted as expressing the difference between 
the initial and final energy of an atom. Clearly, the predictive value of Bohr’s 
atom was identical to that of the spectral formulas on which it was based, 
so no new knowledge was actually obtained. However, now the “math-
ematical fragments” were connected to a more complex construct that 
involved both classical orbits and novel notions like “stationary states” 
and “quantum jumps”—a construct that is regarded as the first quantum 
theory, combining functions, arithmetic formulas, and verbal statements 
in what may be characterized as a multimedial whole. The fact that verbal 
statements played such a crucial role in Bohr’s atom was typical of his 
work, and it is no accident that he is often highlighted as one of the most 
philosophical scientists of his time. Despite its hybrid, innovative character 
Bohr’s atom was very positively received, and soon became the core of 
what is today known as the “old” quantum theory, which was developed 
between 1913 and 1925 by Bohr himself, and by many other authors.7

In the “old quantum theory” each possible stationary state of an atom 
was associated with a set of integer (or semi-integer) numbers derived 
by performing an increasing number of spectroscopic measurements, 
and then fitting these empirical results with spectral formulas containing 
the quantum numbers of the various stationary states. Although these 
sets of “quantum numbers” may appear to be nothing but a group of 
natural numbers, they actually constituted a new form of theoretical 
representation—a new medium of physical theory that was necessary to 
represent and manipulate the new notion of “stationary state.” In principle, 
each stationary state was also associated with a classical orbit but, as the 
formal intricacy of the theory increased, quantum numbers became more 
and more the primary means to aesthetically represent and manipulate 
the innovative, and in many ways obscure, notion of stationary state 
introduced by Bohr.

Physical Quantities as Infinite Matrices 
By 1925 quantum theory had proved to be capable of subsuming a large 
number of new experimental results in spectroscopy, but it still remained 
an extremely fragmentary construct that physicists kept on modifying and 
enlarging to accommodate new spectroscopic evidence. Scientists involved 
in this task usually justified their modus operandi by invoking Bohr’s 

7 For details of these developments see for example Kragh (2012), Jammer (1966), or 
Borrelli (2009).
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“correspondence principle,” a very flexible—not to say vague—heuristic 
tool to formally derive quantum relationships from classical ones. In 1925 
the young physicist Werner Heisenberg (1901–1976) made a proposal for a 
new way of reframing and unifying the results obtained up to then, and fur-
ther developed his suggestion together with Max Born (1882–1970) and Pas-
cual Jordan (1902–1980).8 The result of this process was “matrix mechanics,” 
a theoretical construct perhaps even more innovative than Bohr’s atom. 
Matrix mechanics was a theory expressed in part in verbal terms and in 
part through symbolic expressions, which although at first sight appeared 
to be mathematical structures in fact did not correspond with any rigorous, 
coherent objects of the mathematics of their time. 

Matrix mechanics emerged quite rapidly over the course of a few months 
during 1925, but the process of its construction was extremely complex, 
and I will not attempt to summarize it. I will instead offer a brief overview 
of the new theory, arguing that it represented not only a fundamental step 
from a physical point of view, but also a further radical transformation of 
the way in which “quantum theories” were aesthetically made available to 
fellow scientists. 

Just as was the case for Bohr’s atom, matrix mechanics did not bring with 
it new testable predictions, but rather offered a different, more unitary set 
of rules for obtaining already known results. Matrix mechanics took over 
the key new elements from the old quantum theory: the idea of stationary 
states associated with sets of quantum numbers and that of quantum 
jumps from one state to another. Classical orbits were left out: Heisenberg 
explained that physics should only deal with “observables,” and in atoms 
the only observable quantities are the frequencies and intensities of spec-
tral lines, which are not linked to a single electron orbit but to the transition 
between the two of them. The exact position and velocity of an electron 
orbiting around the nucleus, on the other hand, are not observable and 
so should have no place in quantum theory. Heisenberg’s key original idea 
was that quantum-physical quantities should not be theoretically conceived 
and represented as having at each instant a single numerical value, as was 
the case in classical physics, but rather thought of as always related to an 
infinite set of values. Accordingly, each physical quantity was associated 
with a set of infinitely many values, which were ordered into a two-
dimensional matrix having infinitely many rows and columns. In the case of 
the hydrogen atom each row and each column was labeled by the quantum 
numbers of one hydrogen stationary state, as is seen in the formula below, 

8 For an overview on the emergence of matrix mechanics see Jammer (1966, 196–220).
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where “n” and “m” stand for one or more quantum numbers describing a 
stationary state.

  M  1,1      M  1,2    ...   M  1,m   ...

... ... ... ... ...

 M  n,1   ... ...  M  n,m   ...

... ... ... ... ... 

In this way, each element of the matrix was formally linked to a transition 
between two atomic states, providing a fitting scheme to express the 
observable values of frequency and intensity of atomic radiation. Born, 
Heisenberg, and Jordan stated the rules for how to construct the matrices 
and manipulate them to obtain spectroscopic predictions. The details of 
this procedure are not important for the subject dealt with in this paper, 
but it is very relevant to note that these “infinite matrices” were no rigorous 
mathematical constructs. Born, Heisenberg, and Jordan manipulated 
them according to the usual rules for adding or multiplying finite matrices, 
but they fully acknowledged that for infinite matrices those rules led to 
infinite sums, which in all probability did not converge. For their aims it 
was sufficient that the physically relevant results obtained would make 
sense. In other words, the infinite matrices were a new medium of quantum 
theoretical practice through which predictions could be obtained.

In late 1925 Born collaborated with the already renowned mathematician 
Norbert Wiener (1894–1964) to generalize the formalism of matrix 
mechanics into “operator mechanics,” which would be both physically 
significant and mathematically rigorous. However, their attempts were 
soon preempted by the unexpected appearance in early 1926 of Erwin 
Schrödinger’s (1887–1961) wave mechanics. 

The Return of Differential Equations
As we have seen, the development of quantum theory had taken a path 
that led it further and further away from the differential equations that 
dominated classical physics. With matrix mechanics and Heisenberg’s 
suggestion of discarding atomic orbits, the formal development had also 
produced quite radical physical interpretations. However, differential 
equations made a surprising reentry into the game with a series of 
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papers published by Schrödinger in the space of a few months in 1926.9 
Schrödinger had found an exactly solvable differential equation whose 
solutions   ψ  m, n, l    depended on a set of three integer and semi-integer 
parameters (m, n, l) which precisely coincided with the quantum numbers 
of the stationary states of hydrogen. This was an essential new devel-
opment as far as predictive power was concerned: both in the old quantum 
theory and in matrix mechanics quantum numbers had to be derived 
from empirically based spectroscopic formulas like Balmer’s and then 
inserted by hand into the theory. Schrödinger’s equation instead allowed 
the derivation of hydrogen quantum numbers without making reference 
to experiment. Similar equations could be written for all atoms and, 
although they could not be exactly solved, one assumed that they would in 
principle allow the derivation of the energy levels of the atoms. In a sense, 
Schrödinger’s equation was a very complex and redundant apparatus to 
derive quantum numbers, and the question now was how its many parts 
could or should be interpreted physically. It was a new medium of theory 
opening up a huge new space of physical-mathematical speculation. 

Schrödinger was understandably convinced that atomic spectroscopy 
might be reformulated in terms of the functions   ψ  m, n, l    , which he inter-
preted as describing “matter waves.” However, the Schrödinger equation 
by itself could not deliver any spectroscopic prediction, as one still had to 
assume that quantum numbers corresponded with stationary states, and 
that “quantum jumps” between states would lead to radiation. As is well 
known, Schrödinger made it his main task to get rid of quantum jumps by 
appropriately extending his theory, but was never able to do so. 

By 1927 the refined, if somehow still fragmentary, theoretical apparatus of 
quantum mechanics was in place, and it comprised Schrödinger’s equations 
and their solutions, infinite matrices, and a verbally expressed statement 
about “quantum jumps” between “stationary states,” which had originally 
been introduced by Bohr. The interpretation of the new theory was still 
quite fluid, and some features of Schrödinger’s equations provided material 
for discussion. 

A very important feature of the equation was the fact that if two functions 
solved it, then any linear combination of the two would be a solution, 
too. If a combination of two stationary states was also a solution, did this 
mean that an atom could be in two stationary states at the same time? 
Schrödinger had no problem with this view, since for him the “states” 

9 For an overview of the early development of wave mechanics see Jammer (1966, 
236–280).
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were nothing but waves in a “matter field,” and two waves could always be 
superimposed. Other authors however disagreed, among them Born, who 
suggested that the quantum wave should be interpreted as giving the prob-
ability with which an atom was in one or another state: “an atomic system 
can only ever be in a stationary state [...] but in general at a given moment 
we will only know that [...] there is a certain probability that the atom is in 
the n-th stationary state” (Born 1927, 171).10

This was an early statement about the “statistical interpretation” of 
quantum mechanics, and it marked the start of discussions on whether 
the idea of wave-particle duality that had been assumed for light quanta 
(i.e., photons) could and should also be regarded as valid for electrons and 
protons.11 We see here how the (re)introduction of the classical medium of 
theory, differential equations, and function led to new physical questions. 
These in turn prompted scientists to further analyze quantum mechanics, 
both by trying to reframe it into more rigorous, unitary mathematical 
terms, and by attempting to establish experimentally which interpretation 
of the formalism—if any—made more sense. 

Today, wave-particle duality is part of the standard interpretation of 
quantum mechanics, and the “two-slit experiment” appears in most 
textbooks as the paradigmatic exemplar of the experimental consequences 
of this duality. As shown by Kristel Michielsen and Hans De Raedt in this 
volume, however, the two-slit experiment was formulated only much later 
as a thought experiment, and actually performed even later. If one looks 
at what was happening in the 1920s and ‘30s, the situation appears much 
less clear than what may seem today. For example, in 1928 Arthur Edward 
Ruark (1899–1979) proposed, “A critical experiment on the statistical inter-
pretation of quantum mechanics” (Ruark 1928). Ruark’s proposal was an 
experiment that at the time could not be performed, aimed at establishing 
whether a single atom could actually be in two states at the same time: 
if that was the case, claimed Ruark, then the atom might be able to emit 
light of two frequencies at the same time. This idea sounds quite strange 
today, but these reflections belonged to an earlier, fluid state of quantum 
mechanics in which the wave function was still regarded as a novel formal 
construct, which helped formulate predictions but was not necessarily 
physically significant in itself. 

10 “ein atomares System [ist] stets nur in einem stationären Zustand [...] im allgemeinen 
werden wir in einem Augenblick nur wissen, daß [...] eine gewisse Wahrscheinlichkeit 
dafür besteht, daß das Atom im n-ten Zustand ist” (Born 1927, 171).

11 On the emergence of the statistical interpretation of quantum mechanics see 
Jammer (1966, 282–293).
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Dirac’s Symbolic Notation
After this short detour on experiment, let us go back to the way in which 
quantum theory developed in the late 1920s. Most theorists were not 
primarily interested in interpreting the formal apparatus of quantum 
mechanics, but rather in expanding it to fit a broader range of quantum 
phenomena. Many authors worked to this aim, and their results often 
merged with and built upon each other. I would like to conclude my short 
media archaeology of quantum theory by focusing on one author who was 
probably the most creative one in his manipulation of symbolic expres-
sions: Paul Dirac (1902–1984). In my presentation I have suggested that 
different authors contributing to the emergence of quantum theory used 
different aesthetic strategies to develop and express their theoretical 
research. Many of Bohr’s key research contributions were expressed 
in words and not in mathematical language, while other authors, as for 
example Schrödinger, employed traditional mathematical techniques, 
such as differential equations. More skilled mathematicians, like John 
von Neumann (1903–1957), used very refined mathematical structures as 
guidelines for their work on quantum theory, while Heisenberg, Born, and 
Jordan expressed their reflections in the form of innovative, and possibly 
nonrigorous, constructs: infinite matrices. Dirac’s strategy in theoretical 
research was the manipulation of symbolic notation without much regard 
for mathematical rigor on the one side or physical sense on the other.12 

Dirac’s papers, especially those he wrote early in his career, are often a 
challenge to read. Unlike Heisenberg or Bohr, he offered hardly any verbal 
explanation of the reasoning behind his operations, and unlike Schrödinger 
or von Neumann, his manipulations of mathematical symbols cannot be 
understood in terms of any sharply defined mathematical structure. Yet 
Dirac reached his most significant results by taking symbolic expressions 
and transforming them to generate new physical-mathematical meanings 
(Borrelli 2010). On the basis of archival material Peter Galison has argued 
that much of what Dirac did with his formulas was guided by a visual 
and haptic intuition, which he did not express in his papers—a “secret 
geometry,” as Galison wrote (Galison 2000). While this may be the case, it is 
also clear that Dirac paid great attention to the development of a symbolic 
notation that fittted his aims. It was not a notation linked to rigorously 
defined mathematical notions, but rather reflected the way in which he 
wished to manipulate the epistemic objects he was creating. 

12 On Dirac’s transformation theory see Jammer (1966, 293–307).
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In 1927, while the new quantum theory was proving very successful in 
dealing with atomic and molecular systems and discussions about its 
statistical interpretation were underway, Dirac published a paper in 
which he proposed an extension of quantum mechanics to the treatment 
of phenomena that were not discrete, like atomic spectra, but rather 
continuous, such as collisions between particles. For handling discrete 
systems, matrices were appropriate representations, in that the rows 
and columns formally reflected the discontinuous nature of the states—
but what about systems where energy and other quantities varied con-
tinuously? Dirac neither described physical considerations in words nor 
followed a rigorous mathematical path, but rather tackled the problem in 
terms of finding an appropriate extension of matrix notation. 

His idea was in principle simple: in atomic theory rows and columns of 
matrices corresponded with discrete energy states, but in a more general 
theory they would have to relate to states of quantum systems having 
continuous values of energy or other physical quantities. Dirac did not 
ask what mathematical structure might correspond to a generalization of 
matrices, as Born and Wiener had done, but simply spoke of “matrices with 
continuous rows and columns” (Dirac 1927, 625) and wrote down symbolic 
expressions for them that were not backed up with any rigorous math-
ematical notion. Let us look in some more detail at one example of his 
work. 

As we saw, quantum mechanics contained infinite matrices, and in the 
standard notation the symbol   g  a, a'     represented the element of the matrix 
for quantity g whose rows and columns corresponded to the values of 
quantity a. Dirac now introduced the symbol   g  a, a'    , which visually conveyed 
the idea that it was the same as the matrix for g, but with continuous rows 
and columns. Matrices could be manipulated by sums of their elements, 
and Dirac manipulated “continuous” matrices in an analogous way using 
integrals. For example, the rule for multiplying two matrices g and f had the 
form:

   (g · f)   a,b    =   ∑ 
a'
  

 
       g  a, a'     f  a', b        

In the case of “continuous” matrices, the rule for multiplying them became:

  (g · f)     (a · b)  =  ∫ 
 
  
 
  g (a, a')  f  (a', b)  da' 

When working with matrices, a necessary tool was the matrix usually rep-
resented by the symbol   δ  a, b    , that is, a matrix having 1 on its diagonal and 0 
at all other positions:
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 1             0        0 0         ...

 0  1  0 0 ...

  0       0  1  0      ...

... ... ... ... ... 

This matrix was regarded as the “unity” matrix, since any matrix multi-
plied by it remained unchanged. What kind of expression could take up the 
same role for “continuous” matrices? It was here that Dirac introduced his 
perhaps most successful creation: the “delta function,” often also referred 
to as Dirac’s delta function. Dirac introduced the delta function in a para-
graph bearing the title “Notation.” I will quote the passage at some length: 
readers not familiar with the delta function need not try to understand 
what the characterization means exactly, but simply appreciate the tone of 
the text, which gives a very good idea of the nonchalant attitude Dirac had 
to mathematical rigor.

One cannot go far in the development of the theory of matrices with 
continuous ranges of rows and columns without needing a notation for 
that function of a c-number  x  [NB c-number = complex number] that is 
equal to zero except when x is very small, and whose integral through 
a range that contains the point  x = 0  is equal to unity. We shall use the 
symbol  δ(x)  to denote this function, i.e.  δ(x)  is defined by:

δ   (x)   =   0 when x   ≠   0

and

   ∫ 
-∞

  
+∞

  δ (x)   = 1.

Strictly speaking, of course,  δ (x)  is not a proper function of x but can be 
regarded only as a limit of a certain sequence of functions. All the same 
one can use  δ (x)  as though it were a proper function for practically all 
the purposes of quantum mechanics without getting incorrect results. 
One can also use the differential coefficients of  δ (x) , namely  δ’ (x) ,   
δ’’ (x) ..., which are even more discontinuous and less “proper” then  δ (x)  
itself. (Dirac 1927, 625)13 

Thus, Dirac thought of the introduction of the delta function as a question 
of notation: he clearly perceived his theoretical activity as the manipulation 
not of mathematical objects of physical quantities, but rather of symbolic 

13 Readers familiar with the delta function will have noticed that what Dirac is defining 
here is actually what we today would refer to as  δ’ (x) , but soon the labeling of the 
function was changed to the one usual today.
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expression that carried a hybrid meaning. When the manipulation was 
completed, the results might be tested for mathematical soundness and 
empirical accuracy, and if the outcome was positive, all was well. This 
attitude can be found in many theoretical physicists, but Dirac brought it to 
a new level, and mathematicians heavily criticized the delta function espe-
cially until it was eventually given a rigorous definition.14

Axiomatic Definitions
One of the main critics of Dirac’s delta function, and more in general of the 
flippant way in which the creators of quantum mechanics handled symbolic 
expressions, was von Neumann. In 1928 von Neumann published a seminal 
paper offering a rigorous, axiomatically defined version of quantum 
mechanics based on a notion he developed specifically for that purpose: 
abstract Hilbert spaces (von Neumann 1928).15 At the beginning of that 
paper he criticized specifically the delta function, and wrote:

[In the present quantum theory] one cannot avoid to allow also the so-
called improper functions, such as the function  δ(x)  used for the first 
time by Dirac, which has the following (absurd) properties: 

 δ (x) = 0 , for  x ≠ 0 

   ∫ 
-∞

  
+∞

  δ (x)   = 116. (von Neumann 1928)

Other than Dirac, von Neumann saw the delta function—and also other 
symbolic expressions—as always carrying a mathematical meaning, and 
regarded it in this case as “absurd.” Von Neumann was able to distill from 
the symbolic expressions involved in quantum mechanics some rigorous 
mathematical constructs, but ironically this success helped support 
the physicists’ view that it was perfectly fine to play fast and loose with 
physical-mathematical expressions, as long as the final result was not 
incorrect: eventually, so physicists thought, some mathematician would 
come along and show that what physicists had done improperly could 
be done just as well in a proper mathematical way. Still today, even if a 

14 The delta function is today rigorously defined as a distribution; see Jauch (1972).
15 For an overview on von Neumann’s early work on quantum mechanics see Jammer 

(1966, 307–322).
16 Man kann nämlich nicht vermeiden, auch sogenannten uneigentliche 

Eigenfunktionen mit zuzulassen, wie z.B. die zuerst von Dirac benutzte Funktion δ(x), 

die die folgenden (absurden) Eigenschaften haben soll:  δ(x) = 0 , für  x ≠ 0,     ∫ 
-∞

  
+∞

  δ (x)   =  1” 
(von Neumann 1928, 3). von Neumann‘s characterization of the delta function is the 
same as is usual today.
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symbolic procedure appears questionable, its success is usually taken 
by physicists as an indication that it corresponds with a rigorous math-
ematical procedure that no one has yet had the time or inclination to dis-
cover (Borrelli 2012; 2015a; 2015b). This attitude has led to many significant 
physical results, but has also made the status of mathematical formulas as 
a privileged medium of theory increasingly stronger, as it helped disregard 
problems of rigor and coherence as temporary issues that would find a 
solution with time. 

Epilogue: Bra and Kets
von Neumann’s formulation of a rigorous, axiomatically defined math-
ematical apparatus for quantum mechanics was appreciated more by 
mathematicians then by physicists. Abstract Hilbert spaces eventually 
became the overarching formal constructs for defining quantum theory, 
but in physics research practice they were rarely utilized. The rather 
cumbersome formalism introduced by von Neumann in his papers found 
few, if any, followers, and his innovative mathematical ideas ironically 
ended up being usually expressed in terms of the “improper” notation Dirac 
had introduced in 1927 and later continued to develop further. It is worth 
taking a closer look at the evolution of this notation, as it provides further 
evidence of the importance of the aesthetic, in this case visual and haptic, 
dimension of (quantum) theory.

In his 1927 paper, Dirac had pursued his extension of matrix mechanics 
to “continuous matrices” by generalizing an idea that was at the core of 
Heisenberg, Born, and Jordan’s theory: matrix transformation. The matrix 
associated with a given quantity g (e.g., position) with rows and columns 
corresponding to another given quantity a (e.g., energy) could be trans-
formed into a matrix associated with the same quantity g, but whose rows 
and columns were associated with a quantity c, different from the original 
one. This was done by multiplying the original matrix by an appropriate 
“transformation matrix”  T  and its inverse   T   -1   according to the rule: 

  g  c, c'   =   ∑ 
a, a'

  
 
     T  c, a    g  a, a'    T  a' c'  

-1   . 

For transforming matrices with continuous indices, Dirac simply wrote the 
symbolic analogous formula in which the sum was replaced by an integral, 
without worrying about what it might mean exactly in mathematical terms:

 g (a, a')  =  ∫ 
 
  
 
   (a/c)  g  (c, c')   (c'/a)  dc dc' .  



Quantum Theory 113

This formula defined the symbol (a/c) as the continuous equivalent of the 
transformation matrix, a “transformation function,” but left huge math-
ematical questions open. The matrix sum had already been problem-
atic for infinite matrices, since it was unclear whether it would converge. 
Generalizing it to an integral without specifying what form the various 
terms included in it would have was even more problematic. However, the 
new notation had a very clear intuitive interpretation for readers used to 
working with infinite matrices. It is particularly interesting to note that the 
symbol (c/a) had no graphic equivalent in the formalism of the time. The 
symbol somehow visually and haptically suggested a matrix of which only 
the indices were visible—an object whose only aim was to substitute the 
indices a for c or vice versa. 

One might be tempted to regard Dirac’s procedure as an axiomatic def-
inition of new physical-mathematical notions through the way they were 
manipulated, and in some sense that was what Dirac was doing. Yet he was 
doing it at the aesthetic level of symbolic notation, and not by employing 
the standardized logical-mathematical formalism of the time, as von 
Neumann would later do. One might claim a posteriori that abstract Hilbert 
spaces were already “implicit” in Dirac’s symbols, but this would in my 
opinion misinterpret the historical constellation. At the same time it would 
also be incorrect to deny that von Neumann’s axiomatic construction was 
largely building upon the constructs developed “improperly” in quantum 
mechanics.

In his textbook Principles of Quantum Mechanics ([1930] 1935) Dirac 
employed an only slightly modified version of the notation used in 1927 
for transformation functions, but in 1939 he published a paper “On a new 
notation for quantum mechanics” in which he developed that symbolism 
further into the now ubiquitous “bra-ket” notation. In that paper Dirac 
explicitly stated the importance of notation (Dirac 1939), noting right at the 
beginning:

In mathematical theories the question of notation, while not of primary 
importance, is yet worthy of careful consideration, since a good 
notation can be of great value in helping the development of a theory, 
by making it easy to write down those quantities or combinations of 
quantities that are important, and difficult or impossible to write down 
those that are unimportant. (Dirac 1939, 416) 

The key idea of the bra-ket notation was to split the notation developed for 
the transformation function into two halves:
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 (a/b)  " < a | b > which was the product of the bra < a| and the ket |b >.

As is clear both from their name and their graphic form, a “bra” and a “ket” 
were supposed to be combined with each other in a particular order, so 
that a haptic dimension joined the visual and auditory ones. Putting a ket 
in front of a bra was possible, but the resulting ket-bra would have very 
different properties from a bra-ket, as immediately conveyed by its peculiar 
appearance: |a > < b|. Readers familiar with the formalism of quantum 
mechanics will know that bras and kets today are regarded as representing 
elements of an abstract Hilbert space and of its dual, respectively, and 
there is no doubt that Dirac was exploiting those mathematical structures 
as a guideline, while at the same time avoiding any rigorous definition 
and leaving it to his new notations to promote useful, and to impede 
unimportant, terms. 

Conclusions: Computer Simulations as a New 
Medium of Quantum Theory

I am now at the end of my overview of the many media that contributed 
to the construction of quantum theory: perspective drawings, simple 
arithmetic formulas, verbally stated physical principles, sets of numbers, 
the rows and columns of infinite matrices, differential equations, axiomatic 
logical-mathematical constructs and, last but not least, Dirac’s innovative 
symbolisms such as the bra-kets. Each author was free to choose the 
medium best suitable to his way of working and, especially in the early 
period, attitudes about what may or may not be acceptable as a “quantum 
theory” were very flexible—as long as correct results could be reproduced. 

Can the employment of computer simulations to reproduce the results 
of quantum experiments without making use of the machinery of 
Schrödinger’s equation be seen as a practice belonging to the tradition of 
quantum theory I just sketched? It is my conviction that this is the case, 
and I hope that my presentation offered some material to broaden the 
discussion on that issue. I am convinced that computer simulations as a 
new medium of quantum theory might bring back some of the productive 
tensions present in early quantum physics. 
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Discussion with Arianna Borrelli
Hans-Jörg Rheinberger: Thank you very much for your talk. The stage is 

open for questions, please. 

Hans De Raedt: That was a very nice presentation by the way. So, I was 
always wondering, in a way quantum theory is nothing but linear 
algebra, and linear algebra was known since the time of Gauss. So why 
did it take so long for these physicists to realize that what they were 
doing was just a form of linear algebra?

Arianna Borrelli: Thank you. That is a very good question on the history 
of mathematics and physics. There are many historians of math-
ematics, including me, working on that topic. The answer to your 
question is that, in a sense, linear algebra has not been there since 
Gauss. If we think of linear algebra as abstract algebra, that is in terms 
of abstract Hilbert spaces and similar formally defined objects that 
were introduced by von Neumann... if we think of linear algebra in 
that sense, then there was no “linear algebra” before quantum theory. 
There were only what we see today as different implementations of 
abstract linear algebra, like in differential equations or matrix calculus.

Now, if historically at a certain time there is no formalized, abstract 
linear algebra, the historical actors clearly could not use it to con-
nect all the different “implementations.” Take the example of 
infinite matrices: we can think of them in terms of abstract algebraic 
structures, as “operators” in Hilbert space. But the historical actors 
saw them differently. John von Neumann, for example, or David 
Hilbert thought that if you have an infinite matrix which is bounded, 
then that is a mathematical object and you can do linear algebra with 
it. But if you have an infinite matrix which is not bounded, like those 
of quantum mechanics, a matrix about whose behavior you can say 
nothing, then that is not a mathematical object—I mean, it may be a 
mathematical object today for me or for you, but for the people at the 
time, such a matrix was not a mathematical object. And so one could 
not do any algebra with it.

In a way one may speak of a “thought collective” in Ludwik Fleck’s 
sense (Fleck 1935). What seems obvious to us was not obvious to the 
“thought collective” of quantum physicists at the time.
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HDR: Is it historically correct that Heisenberg, when he was writing down 
this so-called matrix algebra, was not aware of the fact that he was 
doing that? 

AB: Yes, this is correct for the first paper, the one written by Heisenberg 
alone. The matrix formulation was brought in by Born and Pas-
cual Jordan, who were familiar with the matrix formulas. However, 
Heisenberg was working with a formal analogy to Fourier series and 
the multiplication of Fourier series by convolution. That procedure 
has the same form as matrix multiplication. So it’s again a question 
of how you want to look at it. Born and Jordan replaced the structure 
of Fourier series with matrices. That’s a very interesting story and 
in a way it also shows how a formula is not just a formula: the same 
formula can have completely different meanings for different authors.

Martin Warnke: Thank you, this was really a very enlightening presentation 
about how contingent the ways are to grasp the phenomena by 
different formal methods. But what really struck me was that you 
reiterated the fact that the double-slit experiment was so late in con-
ception and in practice. So this is really something that is not clear to 
me: Why this came so late? But the question now is: Have you any clue 
about the nature of this experiment? Since if, as we both do, we follow 
Dirac in saying that the apparatuses and experiments evoke what they 
measure, how could that be, that there is one experiment and one 
apparatus that evokes those complementary phenomena at the same 
time? Is it a sort of joined—linked—experiment and thought exper-
iment around which everything we do, did yesterday, and are doing 
today is orbiting?

Have you got any clue about that?

AB: First of all I have to say when I was preparing this presentation I looked 
for some history of the double-slit experiment, but there is none yet—
and I think someone should write it! What I can say now—and maybe 
those who have worked more with the experiment can say more about 
this—is that in this early period there was a lot of open discussion 
about how to… what term did you use? “Evoke”, yes? So, the physicists 
had these equations and wanted to try to evoke something from them. 
The question is: What? What were they interested in “evoking” through 
the equations? We now think of particles or waves, but that was not the 
case then.
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For example, Ruark, he saw these equations as a possible indication 
of the nonconservation of energy. Ruark thought of the Schrödinger 
equation as possibly saying that energy is only statistically conserved, 
that you could look and find evidence of energy nonconservation in 
single events—but that in the end it would average out. He was trying 
to think of a critical experiment showing whether there was or was not 
this nonconservation. That’s what he was trying to “evoke,” if you want: 
energy conservation or its opposite.

 In the late 1920s people were trying to use thought experiments 
to better grasp what exactly the theory could or could not mean. 
And maybe the idea for the double-slit experiment could only come 
afterwards, when somehow the notion of particle-wave duality 
became more prominent. Only then one thought of an experiment 
evoking waves or particles. 

Kristel Michielsen: I have one comment. There is a paper (Rosa 2012) that 
you could consider as an historical overview of these double-slit 
experiments. It appeared actually because of a discussion on whether 
a Japanese or an Italian group was the first to do the real electron 
double-slit experiment.

AB: Thank you!

KM: And then related to your question or comment, Martin, I would say in 
the two-slit experiment the wave and the particle do not appear at the 
same time. Because you see single events coming and then there’s still 
no observation of wave character, and you have to wait for quite some 
time before you see the interference. So it’s not at all a simultaneous 
appearance of waves and particles.

Lukas Mairhofer: I also rather have a comment, because I think that really 
with the diffraction from a crystal you could demonstrate that there 
is some wave nature of things that you always have been thinking 
of as particles. So maybe the double-slit experiment is not that big 
a step as you seem to describe it. Because there is also an inter-
ference phenomenon, the diffraction from a crystal, and putting in a 
double slit is just creating a different apparatus for doing interference 
experiments.

MW: But we are just talking about interferences, now. We are not talking 
about the other side, the particle. You are talking about the bra and not 
about the ket.
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Eric Winsberg: Yeah, no I agree with you, I think the double-slit experiment 
is pedagogically beautiful in the sense that you don’t really have to 
know very much about other physics to see both the particle and the 
wave existing in the same experiment. But yeah, there are exper-
iments that are harder to understand, where you have to have more 
arguments that maybe, you know, a sophomore undergraduate can 
follow. But yeah, I think there really are experiments like that.

HDR: One more question: On your last slide you said that if you do 
computations we need the wave function collapse. I actually don’t 
think that is true. You said “wave functions, wave collapse is still 
needed for the computation.” Wave functions, certainly, but wave 
collapse, it is not needed: there is no computation where you actually 
use it—interpretation, yes.

AB: Well, I was referring to having first a formula with abstract 
Hilbert spaces and then at some point, when you have to do the 
measurement, you have to introduce the wave functions, and then the 
collapse, in that only one component wave function is left after the 
measurement, and that gives you the probability of the results. So you 
are right: one does not compute with the wave collapse, but assumes it 
to explain how you arrive at the prediction for the probabilities. So it is 
indeed interpretation.

Frank Pasemann: So perhaps just one comment on Dirac’s delta: of course 
it is precise mathematics today, it is a simple example of distribution 
theory. Now because it’s about history perhaps I can give a small story. 
It was on the occasion of Dirac’s eightieth birthday, where almost every 
still living physicist of that time gathered together to celebrate his 
birthday at the International Centre for Theoretical Physics in Trieste, 
and there was a talk by van der Waerden, I think at that time a famous 
mathematician, on Schrödinger equation history. He mentioned a 
physicist in Dublin named Cornelius Lanczos, and he worked out that 
he had exactly the same equation and the difficulties with inter-
pretation, and he was arguing that because he was not embedded in 
the famous German school with all the discussion on how to interpret 
it, he was not—you know—as famous as Schrödinger. 

Now at the end of this talk I think Jürgen Ehlers, director of the Max 
Planck Institute of Physics in Munich at that time, stood up and said, 
“I’m happy to introduce Lanczos here, who is around.” And so he was 
still living, was a very old man with very long white hair, and it was very 
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funny, you know, that someone stood up and that’s the guy who had a 
talk about himself and no one knew that he was still living. Okay.

Anne Dippel: I have one last question. You said at the end computer 
simulations are another medium and they could bring back the 
tensions, the creative tensions, into theory. How would you relate your 
statement to the talk we had yesterday by Hans De Raedt and Kristel 
Michielsen?

AB: Yes, I think computer simulations could play a similar role to Dirac’s 
strange notation. It would be an example of a different strategy to rep-
resent or to make contact with the experimental results—a strategy 
that has already produced these tensions with respect to the usual 
representation in terms of Schrödinger equations. I think this was quite 
clear in the discussion yesterday. It was strange: the discussion took 
the form of classical physics against quantum mechanics, and the Bell 
inequality—and these are... I don’t want to say old subjects, but these 
are discussions that have been spoken about a lot. I think that there is 
actually more. I believe that in what Hans and Kristel presented there is 
some new dimension from the point of view of a representation.

And this is to me similar to the strange notations of Dirac—of course in a 
completely different way, but from the epistemic point of view similar. 
Of Dirac’s notation today we can say: “Oh, we have now shown that it 
was rigorous.” But then, at the time, much of what Dirac was doing was 
not rigorous. And it was just different from the mainstream, it was the 
path that he had to take, in a sense, to try and expand the theory that 
was there. But this is just my take on it.
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