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Introduction

Artificial Intelligence (AI) designers try to mimic human brain capabilities with 
“self-learning” neural networks trained by crowd-sourced selection processes or 
other “unsupervised” selection processes. Presumably, the logic of the input data 
is inscribed in the structure of the artificial network similarly to the way input 
shapes a human brain. Yet decades on, AI-trained chat bots and translation apps 
still fail to vault the low bar of the Turing Test. It is becoming clear that AI is not 
able to interpret signs within f luid contexts. Is biological computation qualita-
tively different from present-day machine computation?  At the time of his death, 
Alan Turing was investigating how biological reaction-diffusion processes create 
patterns, which, in turn, constrain cellular responses and differentially trigger 
development. Similar mechanisms are now thought to provide the temporal and 
spatial constraints for ensembles of neurons allowing them to perform sensory 
binding and to form and recall memories. Had he lived to continue his work, Tur-
ing might have reoriented AI research to better address the challenge of creating 
contextual constraints, which may be what is needed to produce the unpredict-
able and almost miracle-like responses we call human judgement. As it is, orga-
nized statistically, current AI applied to human affairs is only good for stereo-
typing, which, of course, undermines the basic premise of individual democratic 
freedom.

Like an organism, a “smart” machine can seek an object, read a code, locate 
a pattern and make generalizations. Like an organism, a machine can even be 
designed to pursue self-preserving goals. However, we cannot say that machines 
currently possess humanoid intelligence. AI bots cannot understand people be-
cause they are not good with language. They do not get irony, new metaphors, 
metonyms, puns or jokes. Language is fundamentally allusive, not literal, as Tur-
ing once demonstrated in a letter to a friend:



V. N. Alexander44

Turing believes that machines think
Turing lies with men
Therefore machines do not think (1952b).

The fact that Siri cannot get this joke is not because there is not world enough and 
time to train the network; it is symptomatic of the essential difference between AI 
and Biological Intelligence (BI). Selection processes, such as those used to train 
AI networks, cannot evolve true intelligence. I can make such a bold statement 
because selection processes, such as those that neo-Darwinists have claimed have 
evolved animal intelligence, do not, in fact, do the job. The failure of AI chat bots 
is the proverbial dead canary indicating a much bigger problem, an oversimpli-
fied conception of the evolution and development of intelligent action. AI may be 
better than BI at mechanistic rule-bound actions like driving cars, but it is inca-
pable of determining what humans mean or intend to do. The public should not be 
asked to trust AI, accepting that how it works is just a mystery. This paper aims 
to pull back the Wizard of AI’s curtain, revealing that this allegedly superhuman 
intelligence is in fact just a tool, a very powerful one, that is being used by a few to 
control the many.

A Twenty-First Century Evolutionary Theory of Innovation

To theoretical biologists it is becoming clear that, although the natural selection 
of small random changes in genetic material plays a role in evolutionary processes, 
the outcome of such selection is the stabilization of a species and the reduction of 
diversity. Innovation, we now believe (See Turing, 1952a; Margulis & Sagan, 2002; 
Reid, 2007; Shapiro, 2011; Noble, 2016) is likely due to large, interrelated mutation-
al events, like hybridization, gene duplication, lateral gene transfer, transposons, 
symbiogenesis and, importantly to this discussion, the thermodynamic self-or-
ganizing semiotic processes discovered by Turing. Such mechanisms tend to pro-
duce new ready-made tools (not randomly assembled stuff) whose functions can 
then be selected or not. This isn’t your father’s evolutionary theory. 

AI is designed on the assumption that adaptive learning follows the ran-
dom-change with gradual selection neo-Darwinian model of the 1950s. AI, like 
natural selection, makes generalizations based on a statistical definition of fit-
ness: the most frequently reappearing patterns are selected. AI learns with re-
peated positive and negative reinforcement. BI can learn this way too, but it can 
also have epiphanies.
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Algorithms Versus Semiotic Habits

To try explain why AI lacks of a sense of humor, I start by noting that while com-
puters use digital codes and develop algorithms apart from contexts, living cells use 
analog signs and develop self-reinforcing semiotic habits within contexts. This pa-
per will explore the differences between AI and BI from the perspective of Biose-
miotics, a newly developing, transdisciplinary field related to the fields of Cyber-
netics, Complex Systems Science and Biochemistry.  According to Biosemiotics, 
whereas a code requires a precise translation of one form into another, a sign can 
be translated into a variety of forms depending on the relative similarity and/or 
proximity of other signs and transducers. It may be that this f lexibility of bio-
logical signs allows signal transduction to f low easily, to be communicated syn-
chronously and coherently to neighboring cells, even if the signal is not quite the 
correct or conventional one. It may be that this difference between AI and BI can 
account for AI’s failure to adequately translate signs in contexts. 

If AI’s self-learning algorithms seem to work well sometimes to predict hu-
man actions, this is because stereotypes are often true. AI is currently being used 
in US court systems to help determine sentences, exaggerating structural social 
prejudices in the data fed to the AI network. The likelihood that a criminal will 
re-offend is predicted by categorizing him or her as a type. The result is blacks get 
tougher sentences than whites with comparable data points (Angwin et al., 2016). 
AI is stereotyping on steroids. 

AI is also being applied to the management of the public at large. According to 
Andrew Hallman, Deputy Director for Digital Innovation at the US Central Intel-
ligence Agency, thanks to all the data collected on Internet users, the agency can 
now use Deep Learning to better “anticipate the development of social unrest and 
societal instability…three to five days out” (Konkel, 2016). This has me worried that 
a pre-crime unit is up and running.  It cannot be true that sacrificing our privacy 
will keep us safe. Mass surveillance and Big Data collection can only serve the pur-
pose of silencing dissent and maintaining the status quo, not anticipating actual 
crimes. Complex systems, like humans, tend to behave non-linearly: the ability to 
predict individual behavior does not improve in proportion to the increase in the 
amount of data that is used to make the predictions.

Although neural net designers use feedback and feedforward in an attempt to 
mimic non-linear biological processes, no creative mechanism is included, and 
the resulting intelligence resembles nameless, faceless bureaucracies that have 
accreted procedures for dealing with citizenry over many generations and which 
are not only conservative but which tend to narrow options more and more with 
each iteration. 

The first step toward democratizing AI is to unmask this supposedly bet-
ter-than-human judge. AI is no agent; it is a powerful and potentially useful tool 
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that should be in the hands of the many not just the few. A democratic digital so-
ciety, Michael Kwet (2018) has cogently argued, requires uncompromised privacy, 
open-source software, as well as decentralized personal cloud systems that allow 
direct sharing of information. If collection of personal data is thus halted, courts 
and surveillance agencies will not be able to use AI to control individuals based on 
their memberships in or associations with various groups. I hope that my analysis 
of the differences between present-day AI and BI can convince the public to be 
more skeptical of the supposed wisdom or accuracy of AI predictions.

What Turing Knew about BI

Turing invented the most practical tool humans will likely ever wield. And yet his 
engineering successes were driven by an impractical desire to understand the na-
ture of human intelligence. We follow his lead here as we try to understand how to 
best use computing tools in the twenty-first century. 

In the 1950s, after proposing his model for a “self-learning” computer, Tur-
ing’s thinking began to take, what might be called in hindsight, a Second-Order 
Cybernetics or Artificial Life turn. He began conducting experiments and studies 
in mathematical biology. While Andrew Hodges (1983), Turing’s main biographer, 
saw his interest in plant and animal morphogenesis as a departure from his inter-
est in mimicking intelligence, Jack Copeland (2004), who provides the definitive 
commentary on Turing’s science, points out that Turing made it clear that this 
new work was a further investigation of intelligent computation, even though his 
attention had fallen upon giraffe patterns, Fibonacci spirals and leaf generation. 

Turing discovered the spontaneous processes by which unorganized systems 
organize themselves without interference, without external selection. C.H. Wad-
dington (1940) had suggested to Turing that development simply falls into order 
somehow, f lows down the path of least resistance.  It was Turing who suggested 
that an instability, a chance pattern—not an inducer specifically designed for that 
function—could initiate the f low from less order to more order, from chaos to dif-
ferentiation (or, to nod to Gregory Bateson, a difference that makes a difference).  
Ilya Prigogine, who won the Nobel Prize for related research, met with Turing in 
Manchester in 1952 and discussed the theory (Hodges, 1983: 587). Not until 1972 in 
a paper in Physics Today did Prigogine recognize Turing’s contribution. 

Turing argued that reactions that diffused away from the point of instability 
result in the so-called morphogenic fields that differentially determine gene ac-
tion, as described by Waddington. While biologists were interested in what this 
meant for embryology, what Turing was after was knowledge of how neurons 
might similarly differentiate and self-organize. In a 1951 letter to neurophysiol-
ogist J. Z. Young, Turing remarks, “The brain structure has to be one which can 
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be achieved by the genetical embryological mechanism” (qtd in Copeland, 2004: 
517). Although we do not know if Turing thought development was analogous to 
learning, it turns out that it is. His mother Sara Turing may not have been in-
correct when she opined that her son had been on the verge of an “epoch-making 
discovery” when he died (qtd in Hodges, 1984: 624).

AI Compared to BI

When Turing first designed his self-learning network computer, he had assumed, 
tacitly following neo-Darwinism, that humans make random guesses when they 
do not know a procedure for solving a problem. In 1948 in “Intelligent Machinery,” 
he claims, “training a human child depends largely on a system of rewards and 
punishments” for good and bad guesses respectively (Copeland, 2004: 425). Tur-
ing designed a chess-playing program with optional moves that could be tried at 
random. If a move ultimately led to failure, it would not be reinforced. Turing’s 
neural network was designed to start out unorganized and become organized 
with appropriate “interference,” mimicking eduction. Similar kinds of connection-
ist approaches are used today in most self-learning algorithms. The “instruction 
table,” as Turing called a program, is embodied in the network as it is altered 
by reward and punishment. Feedback can be administered by a programmer or 
crowd-sourced on the Internet.  Although this approach is called self-learning 
or self-organizing, as Turing noted, such approaches still require “interference” 
from the outside.

The newest phase of AI is referred to as “unsupervised” learning. For example, 
a visual recognition network was exposed to millions of random unlabeled images 
on the Internet. It eventually detected some commons patterns of, you guessed 
it, cat faces, acquiring pathways and biases in unknown ways, hundreds of lev-
els deep (Le et al., 2013). Programmers did not tell the network what to find, but 
the network can now be used to find cat faces. These new unsupervised networks 
are not so dissimilar to Turing’s 1948 notion of a self-learning network. The main 
difference is the point at which the programmer interferes, during the training 
process to target a pre-specified pattern or after the network as detected a pattern 
that is of interest to the programmer.  In the latter case, the unit of selection is the 
entire network, not individual connections within the network. 

Animals most often learn in “unsupervised” situations, especially non-human 
animals, and are less often taught, intentionally rewarded and punished. It is the 
monkey see, monkey do approach. But interference, or selection, is still at work. 
Experiencing a procedure over and over, actually changes neuronal connections. 
Neurons that fire together wire together, as Donald Hebb (1949) so famously not-
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ed. Learning by rote, strengthening connections over time, is statistical in nature. 
What happens the most—whether it is “right” or not—gets selected and reinforced. 

Repetition is one way neurons develop connections, but not the only.  
Humans (and probably other animals too) can recall details better in contexts, 

if they are associated with things arbitrarily similar or arbitrarily nearby. Rhymes, 
rhythms, tones and other poetic devices, such as metaphor and metonymy tend 
to aid memory, even if the connections are not repeatedly reinforced. The semi-
otic habits of neuronal groups may be initiated by rare stochastic resonances (i.e., 
purely coincidental patterns) which lead to self-organization. A source of un-
predictability in human logic and language use, this poetic type of sign action 
in and among neuron cells dominates subconscious processes. Subjects under 
hypnosis experience cross-modal perception—they begin to hear colors, for ex-
ample—which indicates that when conscious perception is bypassed, the poetic 
workings of the subconscious are more observable (Alexander and Grimes 2017). 
People with synesthesia are better able to recall arbitrary facts because numbers 
or letters can be associated with unique colors, textures and shapes (Harvey 2013). 
Connections based on arbitrarily similar/proximate factors cannot be reduced to 
statistical description; the number of factors is not as relevant to outcomes as the 
qualities of the factors vis-a-vis other factors.

Formalizing Biosemiotics

Could a computer model the way nature organizes itself by linking things ar-
bitrarily similar/proximate? Turing discovered non-linear equations that can 
produce computer-generated zebra stripes, invagination, metachronal waves 
and other natural emergent patterns. Although for years Turing’s work went un-
proven and many believed the similarities between the patterns generated by his 
equations and those found in nature were merely coincidental, Sheth (2012) and 
Raspopovic (2014) have finally shown that a Turing mechanism does indeed de-
scribe the process whereby fingers are created in developing embryos. It has taken 
some time for biologists to identify the actual chemical signals that correspond to 
kinds of relationships Turing imagined would have to obtain if self-organization 
were a mechanism for differentiation and development. Turing’s equations are 
complex, but suffice it to say that they involve variables for diffusion rates, reac-
tion rates, and the ways in which these rates change. Reactions typically involve a 
number of morphogens, for example, X and Y react to produce Z; Z and A react to 
produce 2Y. The first reaction depletes Y; the second increases Y.  To put it differ-
ently, the process might involve an activator that can catalyze its own production 
and that of its own inhibitor, which, in some cases, might diffuse away rapidly, 
setting the stage for traveling wave patterns to emerge.  There is contradiction or 
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paradox in these processes, which are both self-creating and self-constraining, a 
bit like Turing’s syllogism introduced at the beginning of this paper.  

Let me try to elucidate the biosemiosic elements of these types of processes 
with a very simplified visual model with only two elements. To illustrate biological 
computation, I use shapes with material qualities as symbols because the binding 
of biological signals and receptors (sign readers) is often shape dependent. Let us 
say we have a molecule type ╚ and molecule type ╦. They can be turned in various 
directions, e.g., ╗ and ╩.  Neither ╚s or ╦s interact with themselves. So 

1. ╚ +╚ =╚╚  and 
2. ╦ + ╦ = ╦ ╦. 
╦s and ╚s together in certain orientations also result in no change: for example,
3. ╚ + ╦ =╚ ╦ and 
4.  ╗+ ╩ = ╗╩.  

But when ╦s and ╚s meet in other ways, they can interact and undergo change, 
e.g., a ╦ can turn into an╚ . Transformations depend on whether the open hor-
izontal part of the ╦ meets with the open or closed horizontal part of the ╚ . For 
example,

5. ╚ + ╩ =╚╚ 
6.  ╗+ ╦ = ╦ ╦ 

These are the simple local rules that limit interactions. In the contexts of [5] and 
[6], we may say that the ╩ is metaphorically like an ╚, and an ╗ is metaphorically 
like a ╦. 

Because the molecules are always in thermal motion, the way they happen to 
meet up is random. Statistically speaking, the production of new ╚s or new ╦s is 
equally likely. One might think that together these reaction scenarios would tend 
to average out, maintaining a random mixture, but, as Turing found in a simi-
lar experiment, instead, dif ferentiation can occur. In our experiment, a clump of, 
say,╚s happens to form in one area, as they might since randomness is not per-
fectly non-repetitive. No new ╦s will be produced in an╚ clump because a ╦ is 
required to produce more ╦s. Even more ╚s may be produced at the edges of the 
clump when ╚s happen to come in contact with ╩s in the appropriate orientation. 

The clump is self-increasing. No external interference is required. We may say 
that the material qualities of these ╩ and ╚ signs (i.e., the relative similarity and 
proximity of the signs) lead to the collective activity, an emergent spot pattern. ╚s 
can interpret (respond to, interact with, translate)  ╩s and produce more of them-
selves, more ╚s. 

A soup of this mixture would yield some╚ clumps and some ╦ clumps, f loating 
in random mix of both ╚s and ╦s. If ╚ = black and ╦ = white, black and white spots 
will appear on a gray background, as on the coat of an Australian cattle dog. The 
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actual process forming animal coat patterns is much more complicated, but this 
serves as a simple visual illustration of spontaneous self-organization that occurs 
throughout nature, especially in the brain. 

In “The Chemical Basis of Morphogenesis” (Turing, 1952a) and “A Dif fusion 
Reaction Theory of Morphogenesis in Plants” (Turing & Wardlaw, 1952), Turing 
demonstrates that non-linear equations can describe the way patterns form spon-
taneously from unorganized material.  He shows that genes do not need to fully 
specify the complex structure of the organism. The coding genes mainly provide 
the templates for making the materials, in the right order and in the right amounts, 
but do not contain the instructions for how to put the materials together.1 They do 
not have to. The laws of physics and chemistry and the qualities of the materials 
(such as that of ╦s and╚s) act as the transformation rules and the constraints that 
help self-organize the gene-produced materials. As a computer programmer, Tur-
ing would have had great admiration for Nature’s ingenuity and economy. She did 
not have to physically record the procedure for development in the DNA. Instead, 
Nature availed herself of spontaneous self-organizing programs.

Biosemiotic adaptation is possible in this system if, for example, a ╩ happens 
to bind with a new molecule, L, as if it were an ╚.  (L thus functions as a mistaken 
sign of ╚.) All new signs discovered by biological systems must function to an al-
ready existing sign-reading system. They cannot be purely random as with neo-Dar-
winian theory. The outcome of an L and  ╩ binding might be a new molecule that 
will differentially trigger cells affected by this new combination.  

Waddington (1940) had provided Turing with the epigenetic landscape as a visu-
al metaphor for the physical forces that guide development (or cellular responses 
generally) which inspired Turing’s theory. Waddington had argued that before a 
cell has differentiated, it is in a state of instability, like a ball sitting atop a moun-
tain with various valley features down below. Turing realized that any slight f luc-
tuation might push it toward one valley pathway or another from this point of 
instability.  These ideas became known as the “catastrophe theory” of early biose-
miotician René Thom (see Favareau, 2009: 337-376). Waddington guessed that al-
ternative pathways might be “competing” autocatalytic reactions that used some 
of the same molecules for different processes. L might bind to ╩  and trigger one 
pathway or ╚ might bind with ╩ and trigger a different pathway. 

The selection process of self-organization is based on the formal properties of 
the elements, qualities, not just the number of the elements as with statistical se-
lection. Turing discovered the process whereby differentiating waves, morphoge-
netic fields, emerge spontaneously without external selection. This type of compu-
tation is truly self-learning.

1   See Keller (2002) for a history of the understanding of gene action.
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Emergent Brain Patterns

Throughout much of the twentieth century, brainwaves were believed to be su-
perf luous, like the sound an engine makes without contributing to the operation 
of the engine. Now we must consider that these waves may be a type of emergent 
program for organizing the actions of neurons. In thorough reviews of the lit-
erature, Kelso et al. (1991), Uhlhaas et al. (2009) and De Assis (2015) report that 
many neuroscientists understand the mechanisms underlying working memory 
and attention in terms of emergent brain waves that synchronize distant neurons, 
creating virtual neuronal assemblies (De Assis, 2015; Postle, 2006). It appears that 
waves may provide “the ‘contexts’ for the ‘content’ carried by networks of princi-
pal cells” and “the precise temporal structure necessary for ensembles of neurons 
to perform specific functions, including sensory binding and memory formation” 
(Buzsáki & Chrobak, 1995).  In addition, emergent wave patterns may also define 
what data gets attention, that is, consciousness (see Thompson & Varela, 2001), 
which, in turn, affects further sensory processing.

This signal propagation theory of learning, using self-organizing signs (not 
codes), may help explain how people are able to form and use f luid adaptable cat-
egories and deal with complex changing environments. Local f luctuations allow 
stochastic resonance (as with the Ls and ╚s), the similarity and proximity of possi-
ble states, which in turn allows sameness to spread, instant organization. Natural 
selection cannot “see” to select these local interactions (it does not need to since 
these interactions just f low spontaneously to the lowest energy state). What can 
be selected for fitness are the effects of the global patterns that emerge from the 
local interactions (Cf. Rocha, 1998).2

No Artificial Neural Networks or Deep Learning networks are designed to im-
itate the f luid interplay between self-organization and natural selection. AI de-
signers are more committed to strictly selectionist, aka connectionist, approaches. 
Although learning can be accomplished this way, it produces automatons, as does 
standardized curriculums and relentless testing, reward and punishment.  

Even with the latest celebrated update (Levis-Kraus, 2016), Google Translate 
is still bad with puns, jokes and poetry. Psychologists Jung-Beeman et al. (2004) 
suggest that insight—understanding literary themes and metaphors and getting 
jokes—requires synchronizing distant brain areas instantly via gamma waves. 
To design computers that can get allusive language, that understand people, one 
might need a more f luid medium for traveling waves to emerge. Atomic switch 
networks as per Stieg et al. (2014) seem promising; they have been used to create 
emergent patterns that imitate simple natural systems. Experimental chemical 

2   Likewise, contrary to the selfish gene hypothesis, natural selection cannot “see” the genes per se 
only their products.
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reaction-diffusion computers have been around for more than a decade (Ad-
amatsky et al., 2005), but although they create emergent patterns, they do away 
with more permanent connections. Our brains seem to use both.

Maybe we will eventually use reaction-diffusion to create more humanoid AI, 
but we already have eight billion human computers coupled together on the Inter-
net, like so many neurons ready to organize. The potential for spectacular evolu-
tion of knowledge is at our finger tips, if only we were in control of AI algorithms 
rather than controlled by them. With more information about the nature of AI 
compared to BI, we could make better choices with regard to how little or much 
we are willing to let AI think for us.
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