
Repositorium für die Medienwissenschaft

Stefano Borgo; Roberta Ferrario; Claudio Masolo; Alessandro Oltramari
Mereogeometry and Pictorial Morphology
2007
https://doi.org/10.25969/mediarep/16746

Veröffentlichungsversion / published version
Zeitschriftenartikel / journal article

Empfohlene Zitierung / Suggested Citation:
Borgo, Stefano; Ferrario, Roberta; Masolo, Claudio; Oltramari, Alessandro: Mereogeometry and Pictorial Morphology.
In: IMAGE. Zeitschrift für interdisziplinäre Bildwissenschaft. Themenheft zu Heft 5, Jg. 3 (2007), Nr. 1, S. 36–
49. DOI: https://doi.org/10.25969/mediarep/16746.

Erstmalig hier erschienen / Initial publication here:
http://www.gib.uni-tuebingen.de/image/ausgaben-3?function=fnArticle&showArticle=101

Nutzungsbedingungen: Terms of use:
Dieser Text wird unter einer Deposit-Lizenz (Keine
Weiterverbreitung - keine Bearbeitung) zur Verfügung gestellt.
Gewährt wird ein nicht exklusives, nicht übertragbares,
persönliches und beschränktes Recht auf Nutzung dieses
Dokuments. Dieses Dokument ist ausschließlich für
den persönlichen, nicht-kommerziellen Gebrauch bestimmt.
Auf sämtlichen Kopien dieses Dokuments müssen alle
Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen
Schutz beibehalten werden. Sie dürfen dieses Dokument
nicht in irgendeiner Weise abändern, noch dürfen Sie
dieses Dokument für öffentliche oder kommerzielle Zwecke
vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder
anderweitig nutzen.
Mit der Verwendung dieses Dokuments erkennen Sie die
Nutzungsbedingungen an.

This document is made available under a Deposit License (No
Redistribution - no modifications). We grant a non-exclusive,
non-transferable, individual, and limited right for using this
document. This document is solely intended for your personal,
non-commercial use. All copies of this documents must retain
all copyright information and other information regarding legal
protection. You are not allowed to alter this document in any
way, to copy it for public or commercial purposes, to exhibit the
document in public, to perform, distribute, or otherwise use the
document in public.
By using this particular document, you accept the conditions of
use stated above.

https://mediarep.org
https://doi.org/10.25969/mediarep/16746


36 IMAGE | Ausgabe 5 | 1/2007
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Mereogeometry and Pictorial Morphology 

Abstract 

The paper reviews geometrical approaches in the area of quali-

tative space representation by discussing formal systems of 

geometry based on the notion of extended regions (mereo-

geometries). The focus is on primitives that are cognitively mo-

tivated and that capture different notions of naive geometry. 

The paper then moves to consider the role of mereogeometries 

(and in particular of the concepts they rely upon) in the domain 

of picture morphology in two ways: it discusses some primitives 

that are motivated from the cognitive perspective, and it con-

siders the issue of granularity and refinement. 
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1 Introduction 

Space, as the realm of physical locations or as the structure where to organize knowledge, 

has always been at the center of scientific research. In this work we look at space in two 

distinct senses: on the one hand the characterization of physical space as provided by 

mereogeometries [Borgo & Masolo to appear], on the other the study of space in the light 

of pictorial representation and, more specifically, of pictorial morphology [Schirra 2005]. If 

mereogeometries are the result of a formal approach to geometry that was primarily de-

veloped in the 20th century and that tries to do justices of cognitive and foundational princi-

ples, pictorial morphology is the research area where images are analyzed and decom-

posed with tools inspired by techniques developed in linguistics (e.g., generative gram-

mars). The two approaches are fairly recent and their possibility of interaction seems 

strong. The paper first reviews the motivations and the development of mereogeometries 

and then moves to investigate the relationships between mereological primitives and re-

search in pictorial morphology. The goal is not to set a precise comparison, which would 

be premature since the connection between these areas is still in a primitive state, but to 

look at commonalities and to suggest possible future investigations in the respect of the 

particularity and aims of each discipline.  
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2 Mereogeometry  

Mereogeometry is a form of geometry (that is, a mathematical theory) that has found its 

place not in the usual mathematical community but within the knowledge representation 

area and, more precisely, in the domain of qualitative representation. The interest on rep-

resentation of space based on mereology (i.e., the relation of parthood over extended re-

gions) goes back at least to Lobacevskij [1835] but it has not catch the attention of a con-

sistent number of researchers before the end of the last century. From the 90s, research 

on this topic has finally become consistent and the number of papers devoted to this area 

has regularly increased since then.  

Going back to what we may consider the beginning of research in mereogeometry, we find 

Lobacevskij’s work (published in 1835) where the author posits as task of his research the 

search of an alternative to the axiomatic foundation of geometry based on points. At the 

time, geometry was by antonomasia Euclidean geometry. However, some researchers 

were pointing out that this system falls short of satisfying cognitive concerns being based 

on the cognitively disputable notion of point. Indeed, human experience of space is experi-

ence in magnitude and points cannot be empirically experienced. Nonetheless, what 

should be taken as ground for a cognitively and philosophically sound geometrical system 

and what properties such a system should have was not clear yet. Taking solids as basic 

entities for his system, Lobacevskij revolutionizes the foundations of geometry from the 

ontological viewpoint and begins a new field to fill the gap between geometrical and spatial 

entities.  

Little by little, systems of mereogeometry (although not yet called in this way) started to be 

introduced and discussed with particular emphasis on cognitive soundness and expres-

siveness. As one could expect, at the beginning the aim was to show that the concept of 

point is not necessary for the foundation of geometry. After all, the standard approach at 

the time was to define regions as sets of points. This topic pervades the works of White-

head [1929], De Laguna [1922], Nicod [1924], Tarski [1956], and Grzegorczyk [1960]. With 

the introduction of formal techniques to reconstruct points from extended regions, the dif-

ferent conceptualizations of space that were proposed in those years could be seen from a 

more rigorous perspective. Now the attention was driven to the properties of space, the 

primitive relations, and the ontological nature of the entities in the adopted domain of dis-

course. In particular, these authors talk of apparently different entities like solids, extended 

regions, bodies, and volumes. In some cases these notions are used just informally, and it 

is difficult to understand the presuppositions or the basic intuitions about (physical) objects 

and their possible locations in space. In addition, some authors have developed mixed 

theories where the domain of discourse includes entities of different dimensions like 

points, lines, surfaces, and volumes (Gotts [1996] and Galton [2004]).  
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While classical geometry had already been defeated as ‘the geometry of physical space’ 

after the introduction of relativist physics, the centrality of Euclidean geometry was now 

substantially questioned even at the level where it is most successful: the layout of our 

everyday space.1 The revolution was brought by the definition of points as particular sets 

of regions. Since the new theories succeeded in defining Euclidean entities and relations 

within a different domain, one cannot rely on purely formal arguments to establish which 

entities and relations deserve the role of geometrical primitives. Euclidean geometry is 

challenged to defend itself on the choice of the basic entities, an issue that has always 

been avoided by pointing at the successful history of the discipline in modeling space intui-

tions.  

But now mereogeometries have reached a level of formal clearness and are supported by 

arguments that arise in the new studies of the relationship between humans, their percep-

tual and cognitive apparata, and their experienced knowledge of space. Here, region-

based geometries seem to be cognitively more appealing since they make possible an 

(almost) direct mapping from empirical entities and laws to theoretical entities and formu-

las. At the same time, the new entities are openly discussed: the consequences of choos-

ing extended regions as primitive entities, the meaning of empirically experiencing ex-

tended regions, the role of perfect regions in geometrical construction.  

It has been with the work of Clarke [1981, 1985] that theories based on extended entities 

have shown their potentialities for both their formal aspects and their possible use in appli-

cation. Furthermore, the ontological clearness and the evident connection with physical 

entities justify the interest of philosophers. The relations of parthood (Greek meros = part, 

hence mereology) and connection (topology) are here taken to be fundamental notions 

exemplified by spatial or material entities like physical objects, chunks of matter, holes, 

etc. (see Simons [1987], Casati and Varzi [1999], and Smith [1998]). Nowadays, these 

theories are known as mereotopologies. Then, we can look at mereogeometries as theo-

ries that extend mereotopologies with predicates and/or relations of geometrical import. 

They may be motivated from different research domains, as it will be explained below, 

since the general idea is to reconstruct a commonsense notion of space as it is under-

stood in those domains.  

                                                 
1 Riemann and Lobacevskij showed that there is no strong evidence in favour of grounding Euclidean ge-
ometry on human mental structures, moving away from the view in Kritik der Reinen Vernunft (see Kant 
[1787]). Thus, the notion of an absolute space independent of physical bodies should be discarded, denying 
also the existence of a pure spatial intuition. In other words, although Euclidean geometry provides a suitable 
framework to represent the sensible universe, it does not follow that the axiomatic system underlying that 
geometry has to be thought as embedded in the structure of space. “Geometry, therefore, so far as it seeks 
to be a science of space, is by no means independent of physical experiences; and hence […] it does not 
investigate some sort of “pure space”, but rather describes certain aspects of the behaviour of bodies in na-
ture” (Schlick [1925], pp. 48–49). 
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Although space has been traditionally captured by point-based geometry, it must be rec-

ognized that, overall, the properties of Euclidean space fit our commonsense notion of 

space. Thus, it should not be surprising that most mereogeometries lead to systems 

‘equivalent’ to Euclidean geometry [Borgo & Masolo, to appear]. This very fact shows how 

our cognitive perception of space is quite stable and precise and is not affected by the 

choice of geometric primitives. Indeed, the properties that commonsense space should 

satisfy are not an issue. The crucial point is how we cognitively attain this specific notion of 

space. In this perspective, the first question that mereogeometries try to answer is what 

primitives apply to extended objects and are expressive enough to generate the common-

sense notion of space.  

Mereogeometries naturally arise in various areas. In Schmidt [1979] physics is presented 

as a theory based on extended entities. This theory allows us to refer explicitly to the ob-

jects involved in experiments. Generally speaking, cognitive science and computational 

linguistics analyze the possibility of formalizing human learning, conceptualization, and 

categorization of spatial entities and relations. In particular, Renz et al. [2000] take into ac-

count the cognitive adequacy of topological relations while Aurnague et al. [1997] and Mul-

ler [1998] show how mereogeometrical notions are central in the semantics of natural lan-

guage. Donnelly [2001] formalizes the theory of De Laguna in the perspective of common-

sense analysis of spatial concepts. In computer science and more specifically in qualitative 

spatial representation and reasoning,2 mereogeometries are applied for modeling qualita-

tive morphology and movement of physical bodies,3 for describing geographical spaces 

and entities in Geographical Information Systems,4 as well as for characterizing medical 

and biological information.5  

In all these areas, specific foundational and applicative concerns affect the development of 

the theories based on geometrically extended entities. Indeed, in the literature there are 

numerous mereogeometries that differ on primitive entities, formal properties, as well as 

general principles. Unfortunately, due to technical difficulties, there are just a few formal 

studies on the relationships among mereogeometrical systems. In particular the poor 

axiomatization of most mereogeometries and the lack of a general methodology further 

complicate the task. A more systematic comparison is encouraged to facilitate both reuse 

and communication among applications based on different systems.  

                                                 
2
 See Cohn & Hazarika [2001] and Vieu [1997] for good overviews. 

3
 Bennett et al. [2000a, 2000b, 2001], Borgo et al. [1996], Cristani et al. [2000], Dugat et al. [1999], Muller 

[1998], Galton [2000], Li et al. [2003], Randell et al. [1989, 1992]. 
4
 Pratt-Hartmann & Lemon [1997], Pratt-Hartmann & Schoop [2000], Stock [1997]. 

5
 Schulz [2001], Cohn [2001], Smith & Varzi [1999], Donnelly [2004]. 
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Basic Terminology  

The study of space is made possible by adopting a few well-defined concepts. Although in 

this paper we do not need to look at the precise formal definitions (we will present them in 

simplified terms), it is always good to try to understand the details and the ontological 

meaning of a defined concept. The interested reader can look at [Simons 1987] for a more 

in depth analysis of mereotopological terms and [Borgo & Masolo to appear] for the 

mereogeometrical terms.  

At the basis of topology we have the notion of open set. An open set is a set that does not 

contain its boundary: examples are (0, 5) in the one-dimensional space ℜ1 (the real line) 

and {(x, y) | x2 + y2 < 1} in the two-dimensional space ℜ2. The dual notion is that of closed 

set, that is, a set that contains its boundary like [0, 5] in ℜ1 and {(x, y) | x2 + y2 ≤ 1} in ℜ2. 

For a physical example, think of an apple with an extremely thin (we would say ‘infinitely 

thin’) skin: the apple without the skin fills an open set, with the skin a closed set. In gen-

eral, given an open set A, the corresponding closed set is the smallest closed set B that 

contains A (in turn, A is the biggest open set contained in B). The closure operator high-

lights this relationship: given an open set A as before, the closure of A is the set B. The 

difference between an open set and its corresponding closed set is called the boundary. 

Then, for any set C, C plus its own boundary is closed (indicated by [C]) while what re-

mains of C after its boundary has been dropped is an open set (indicated by C°). Note that 

the empty set and the universe of domain have no boundary and thus are at the same time 

open and closed.  

A regular set A is a set stable under the operations of topological closure (i.e., [ ] and its 

dual °) in the sense that: (i) the closure of a regular set A is equal to the closure of the cor-

responding open set A° (formally [A] = [A°]) and (ii) the open set of a regular set A is equal 

to the open set of its closure [A] (formally A° = [A]°). These regions are dimensionally ho-

mogeneous in the sense that the conditions exclude objects of mixed dimensions. For ex-

ample, in ℜ3 a solid cube with a point removed or a solid cube with an external segment 

attached to it are not regular. Finally, since a regular set may be neither open nor closed, 

an open regular set is a regular set that is also open (analogously for closed regular sets).  

Informally, two sets are said to be connected when ‘they touch each other’. There are sev-

eral ways to make precise this notion. Below we use it in the following sense: given two 

non-empty sets A and B, they are connected if [A] and [B] (i.e., their closures) share at 

least one point.  

The notion of self-connection is introduced to talk about sets that are not scattered; they 

are ‘single pieces’ so to speak. A set A is self-connected if it is impossible to split A in two 
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non-empty sets without generating a new extended boundary in each of the parts. The in-

tuition behind this notion is easily grasped when we look at physical objects. Take a 

chocolate bar: if we image to cut the bar in two parts, we know that each part will present 

some ‘extended’ new boundary, namely where the cut takes place (‘extended’ because it 

is not just a point or a line; it is a new piece of surface). Compare this with a set of candies: 

we can split the candies in two groups (dividing them by color or brand or flavor) without 

generating any new boundary.  

The notion of congruence captures the idea of objects of same shape and same size. If 

two objects are congruent, each can fill up the same location that the other does. Rela-

tively to abstract geometrical entities, these notions can be rephrased as: two sets of 

points are congruent if it is possible to move one over the other (or over a symmetric im-

age of the other) so that each point of the first is co-located with a point of the second and 

vice versa. Note that the movement must be ‘rigid’, that is, in the movement to fit the other 

set, no part of the geometrical entity must undergo squeezing or stretching.  

3 Mereogeometries, Primitives and Interpretations  

The formal interpretation of the non-logical primitives is crucial to understand the expres-

siveness and the cognitive plausibility of a logical system. For instance, researchers have 

been interpreting the notion of ‘extended region’ using different sets of geometrical loci. 

Common to most approaches is the interpretation of extended regions as regular sets in 

the space ℜn (where n is the dimension of the space one is modeling). However, rarely all 

regular sets are considered; often one restricts the interpretation to the subclass of open 

regular sets, closed regular sets, polygonal regular sets, finite regular sets, and so on.  

Unfortunately, especially in the early works in mereology, this aspect has been mostly ne-

glected. However, to be honest, even in recent literature it may happen that the formal in-

terpretation of the primitives is not addressed. Indeed, sometimes researchers relay on in-

tuitive interpretations and focus just on formal and implementation properties of the primi-

tives. In these cases, the satisfaction of interesting properties is considered as the prelimi-

nary condition that may motivate a subsequent logical formalization. In other approaches, 

the goal of the research is limited to the construction of computationally efficient systems, 

and, in these cases, the logical formalization is not even attempted.  

If one wants to consistently analyze and make a comparative study of these mereo-

geometrical systems, one needs to start with a general discussion on implicit assumptions 

which motivate the intended interpretation of the non-logical vocabulary and the adopted 

domain of discourse. Without this analysis, we suspect, it is unrealistic to look for a suit-

able (or even correct) framework for a comparison. An example in this sense is carried out 
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in [Borgo & Masolo, to appear]. This work discusses and compares some systems of 

mereogeometry based on different primitives and different domains that we report here.  

T1:  We begin with the mereogeometry presented in [Tarski 1956] and further developed 

in [Bennett 2001, Bennett et al. 2000]. Here there are two primitives: the binary rela-

tion P of parthood (P(x, y) stands for “region x is part of region y”) and the predicate 

S of sphere (S(x) stands for “region x is a sphere”). The theory has been developed 

for the domain of non-empty regu-

lar open subsets of ℜn. The idea is 

that P can be interpreted as set-

inclusion among regions of points 

in ℜn and that S corresponds to the 

notion of ball in ℜn.6  

T2:  This theory was presented in [Borgo & Masolo, to appear] and adopts three primitives: P, SR, 

CG. The first is the relation of 

parthood we have seen in T1. SR is 

the predicate of self-connectedness: 

SR(x) is read “region x is self-

connected” (see Fig. 2). Finally, GC is 

the binary relation of congruence: 

CG(x, y) stand for “regions x, y are 

congruent”. The domain for the theory 

is given by the non-empty regular 

open subsets of ℜn with finite diame-

ter. That is, compared to T1, the the-

ory discharges infinite regions.  

T3:  The third system was given in [Nicod 1924] and is based on the primitives P and 

Conj. As before, P is the relation of parthood. Conj is the quaternary relation of con-

jugateness: Conj(x, y, z,w) stands for “regions x, y and z, w are conjugate”. Infor-

mally, this means that there is a 

point7 px in x, a point py in y, a 

point pz in z and a point pw in w 

such that the distance between px 

and py equals the distance be-

tween pz and pw (see Fig. 3). The 

domain of this theory is the set of 

non-empty regular closed sub-

                                                 
6
 Formally, S(x) is translated as: there exists a point c ∈ ℜn

 and a value r ∈ ℜ+
 (the positive reals) such that x 

= ball(c, r)) (see Fig. 1). 
7
 Recall that x is an extended region and should not be confused with a set of points. However, the formal 

interpretation takes x to be a set of points and so the informal reading is justified. 

Figure 1: x is part of y, P(x, y); z is a sphere, S(z)

 
Figure 2: x and y are connected, C(x, y); w is self-
connected, SR(w), while z and v are not; z and v 

are congruent, CG(z, v) 

 
Figure 3: x, y and z, w are conjugate, Conj(x, y, z, w)
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sets of ℜn that are self-connected. Compared to T1, the theory discharges scattered 

regions.  

T4: Next, we have the mereogeometry 

introduced in [De Laguna 1922] 

and further developed in [Donnelly 

2001]. This time we have just the 

primitive dubbed can-connect and 

indicated by CCon. CCon(x, y, z) 

stands for “region x can connect 

both regions y and z”. The idea is 

that the length of the diameter of 

region x is at least as the distance between regions y and z: intuitively, if this holds, 

one can ‘move’ x in a position where it is in contact with both y and z (see Fig. 4). The 

domain is more restricted than those seen so fare: it takes only non-empty regular 

closed subsets of ℜn that are both self-connected and finite. Compared to T1, the 

theory considers closed regions only and discharges both scattered regions and infi-

nite regions.  

T5:  The system introduced in [Van Ben-

them 1983] was later further devel-

oped in [Aurnague et al. 1997]. In 

this mereology, the primitives are the 

binary relation C of connection and 

the ternary relation Closer of clos-

erness. C(x, y) stands for “region x 

is connected to region y” and Closer(x, y, z) for “region x is closer to region y than to 

region z” (see Fig. 5). The domain for this theory is the set of non-empty regular sub-

sets of ℜn. That is, it is larger that the domain of T1 since the latter takes the open 

regular regions only.  

T6:  Finally, we consider the system given in [Cohn 1995, Cohn et al. 1997a & 1997b]. 

Here there are two primitives: the bi-

nary relation C of connection already 

seen in T5 and the binary relation 

ConvH of convex-hull: ConvH(x, y) 

stands for “region x is the convex hull 

of region y” (see Fig. 6). The theory 

takes as domain the set of non-empty 

regular open subsets of ℜn like in T1.  

 
Figure 4: x can connect y and z, CCon(x, y, z) 

Figure 5: x is closer to y than to z, Closer(x, y, z)

 
Figure 6: x (corresponding to region y 
plus the areas enclosed by the dash 

lines) is the convex hull of y, ConvH(x, y) 
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Although these theories adopt quite disparate primitives, in [Borgo & Masolo, to appear] it 

has been shown that they are closely tied. To appreciate their interrelationships, we need 

first to introduce some notions.  

Informally, the comparison between two systems consists in showing that everything that 

can be said in one system can be said in the other, and furthermore, that everything which 

holds in one system holds in the other as well. In logic, this result is usually obtained via 

the notion of ‘explicit definition’ that amounts to showing that what is primitive in one sys-

tem can be defined in the other. However, here the comparison is complicated by the lack 

of axiomatization of some theories, a difficulty increased by the fact that the theories rely 

on different domains of discourse. For this reason, we generalize the notion of explicit 

definition as follows.  

Definition 3.1 If A is a primitive of a theory T, we say that A is explicitly definable in an-

other theory T’ for a domain D if there exists an expression Φ in the language of T’ such 

that the interpretations of A and Φ are equivalent for their structures with domain D.  

If we forget the reference to domains, the notion of explicit definition leads to the classical 

notion of equivalence among theories. Two theories are equivalent if all the primitives of 

the first are explicitly definable in the second, making the first a subtheory of the latter, and 

vice versa. However, for mereogeometries the dependence on the domain is crucial. Then, 

we need to introduce the generalized notions of subtheory and equivalence.  

Definition 3.2 A theory T is a subtheory of T’ for domain D if every primitive T has an ex-

plicit definition in T’ for that domain.  

Now, it becomes possible to capture a notion of equivalence, called conceptual equiva-

lence, that is suited to mereogeometries. Basically, it relativizes equivalence to logical 

structures.  

Definition 3.3 Let T and T’ be theories with domains Di and Dj , respectively, T and T’ are 

conceptually equivalent if T is a subtheory of T’ and T’ is a subtheory of T with respect to 

both Di and Dj.  

The results in [Borgo & Masolo, to appear] can now be formulated as follows.  

Theorem 3.1  

¾ Theories T1, T2, T3, T4, T5 are equivalent;  

¾ T6 is a subtheory of all theories T1, T2, T3, T4, T5;  

¾ T1, T2, T3, T4 are conceptually equivalent.  
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Theories T1, T2, T3, T4 have the characteristics of a complete geometry and are called full 

mereogeometries. The other two systems are set apart for different reasons. T5 is as 

strong as the previous but it is associated to a much richer domain where regions of differ-

ent dimensions can coexist. The analysis of this domain seems to require further consid-

erations. Theory T6 is representative of a large number of mereogeometries. This and 

many other systems in the literature, e.g., the Lines Of Sight [Galton 1994] and ROC 

[Randell & Witkowski 2006], have limited expressiveness, and their position in the land-

scape of mereology is not yet clear. Nonetheless, subsystems of full mereogeometries are 

of great interest since they capture a particular perspective on space whose motivations 

come from very active areas of research like robotics and qualitative aspects of human 

perception.  

4 Topics across Mereogeometry and Pictorial Morphology  

We have seen that mereogeometry stems from the need to study space independently 

from entities and notions that are out of reach for human perception. This research has 

two major motivations, which we have not set apart yet, namely the study of space from a 

cognitive perspective, and the representation of space in qualitative fashion.  

In the cognitive perspective, which has implicitly driven the exposition of section 2, the goal 

is to find a formal characterization of space, as experienced by humans, which rely upon 

entities and relations that are as much as possible under human perception and (direct) 

cognitive grasp. The fact that there are several alternative options (as seen in section 3) 

does not weaken the goal since this area did not suffered from the myth of the ‘true model 

of space’, a myth that affected the whole history of Euclidean geometry. The other ap-

proach is dubbed qualitative. Qualitative systems are formalisms widely studied in the arti-

ficial intelligence community since they embrace a perspective strongly focused on the 

balance between expressiveness and (effective) computability. In this case, one looks at 

formal representations of space where, roughly speaking, one can represent a limited set 

of geometrical properties (like those relevant to perception, navigation or conceptualization 

of external reality), without the formal complexity intrinsic to point-based geometry. In a 

nut, the goal is to find ways to represent limited amounts of spatial information avoiding 

computationally expensive languages.  

Both these views have import in the area of pictorial morphology as is pointed out in 

[Schirra 2005]. On the one hand, the search for grounding pixemes (either as primitives or 

as prototypical) naturally leads to a discussion that matches the debate on basic geometri-

cal entities. On the other hand, the need of rendering and understanding complex images 

in a computational setting suggests (at least in theory) the existence of a limited number of 

basic pixemes that can be combined via a formal calculus of limited complexity, and thus, 

hopefully, being qualitative. Of course, there is much more in pictorial morphology than this 
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as it was clear from the beginning, see for instance the seminal work of Goodman [1968]. 

While mereogeometry stops at the geometrical aspects of physical objects and their rela-

tionships, pictorial morphology has to take into account other elements like granularity 

(which may affect very basic properties as connectedness among entities, i.e., the topol-

ogy itself) and appearance (from which the difference between resemblance in geometry 

and in perception). Indeed, mereogeometry inherits from standard geometry the primary 

interest in loci and shape description including features like, e.g., linear borders (the be-

tweenness relationship has been studied both in point based and in region-based geome-

try). The goal, from this perspective, is a formalization of the necessary and sufficient con-

ditions for classifying relevant entities and entity dispositions. Pictorial morphology comes 

from a broader view where the issue of entity description is subordinated to the primary 

goal of entity recognition. The interaction between an image and what it depicts is highly 

intertwined with non-geometrical aspects like experience, expectations, and common-

sense reasoning; aspects that go beyond even visual perception. In this context, one can-

not disregard forces like gravity (which is intrinsic in the representation and perception of 

supported and supporting objects), properties like orientation (which is archetypal in ani-

mals and buildings), emerging features like density (related to the distribution of objects) 

and other perceptually relevant characteristics like colors.  

Limiting our discussion on the common elements in mereogeometry and pictorial morphol-

ogy, we should ask what can be learned from the latest results in the study of space. Per-

haps, the first observation to make is that mereogeometry corroborates a conclusion that 

has puzzled researchers in pictorial morphology: the lack of constraints on the choice of 

primitives. In these domains one arrives easily to equivalent formalisms starting from quite 

disparate assumptions. It follows that the choice of primitives cannot rely on purely formal 

properties, it must be supported by arguments and observations from other perspectives 

like those embedded into the cognitive, evolutionary, mental, and perceptive views. In ge-

ometry and mereogeometry we have observed the development of several geometrical 

systems which, exploiting disparate primitives, naturally lead to formal geometries of 

equivalent expressiveness.8 These primitives may capture comprehensive shape descrip-

tions like ‘being a sphere’ [46], may concentrate on local features like ‘having cavities’ 

[Cohn 1995], ‘having a corner’ [Eschenbach et al.  1998] (‘forming a right angle’ in Euclid-

ean geometry [Scott 1997]), or on global properties like ‘being fully symmetrical’ and its 

opposite,’ being totally asymmetrical’. The expression ‘fully symmetrical’ is here used to 

indicate a region that is symmetrical with respect to a given point as well as with respect to 

all the lines (planes and hyper-spaces in general) through that point. Needless to say that 

the notion of ‘fully symmetrical region’ brings us quickly to the definition of sphere (in any 

dimension). The expression ‘totally asymmetrical’ instead is satisfied by a region that is 

asymmetrical with respect to any point, line, plane and hyper-space in general.  

                                                 
8
 In the light of section 3, equivalence is to be intended “modulo” the choice of the domain. 
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All these approaches have been analyzed in two directions: formal expressiveness, and 

cognitive role. The first issue has brought a series of scattered results that are slowly build-

ing up the landscape of the mereogeometries. Cognitively, the results are less promising: 

no cognitive system seems to be identified as central or primary. One can concentrate on 

direction or orientation, on distance or size or shape; take into account vagueness, 

disposition, forms of resemblance etc. The result will be a system, perhaps unusual, 

perhaps hard to compare to well known geometries and yet it will have that flavor of 

cognitive adequacy or conformity that will prevent us from discharging it.  

5 Mereogeometry as a Tool for Pictorial Morphology  

We conclude this excursus on mereology and its relationship to pictorial morphology with a 

few observations that suggest how results in the first area can help casting light into the 

second. Although the discussion can apply to the variety of perspectives embedded in pic-

torial morphology, let us focus on a concept like feature, and on the distinction between 

content-bearing features and noncontent-bearing features. It is clear that the analysis of 

resemblance and systems of pictorial representation must make clear what types of fea-

tures there are and what information they carry. Also, from the arguments presented in this 

paper, we should not expect mereogeometry to answer the main questions. Still, we know 

that we can positively look at mereogeometry for important hints. For instance, the settling 

of the structure and properties of projective mereogeometry (a subdomain that is still not 

well understood) will help us in isolating the spatial features of prospective representations 

and how these group together by forming interconnected systems. Such a work is needed 

to clear up the types of resemblance that properly depend on these features and the inter-

relations within these types. Similarly, mereology will not tell us what images are or what 

their content is. Nonetheless, it can be an important tool to determine why pictorial repre-

sentations follow some spatial rules but not others, and why some relations are necessar-

ily intrinsic (think of the relationship among a picture and its parts, their relative sizes and 

topological properties) while others may not be.  
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