
Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

1

Digital Code and Literary Text
By Florian Cramer
No. 20 – 22.10.2001

Abstract

Digital code as text. Can notions of text that were developed without electronic texts
in mind be applied to digital code, and how does literature come into play here?
My talk is based on the general (yet disputable) assumption that the theoretical
debate of literature in digital networks has shifted, just as the poetic practices it is
shaped after, from perceiving computer technology solely as an extension of
conventional textuality (as manifest in such notions as 'hypertext', 'hyperfiction',
'hyper-/ multimedia') towards paying attention to the very codedness of digital
systems themselves. Several phenomena may serve as empirical evidence:

- The early focus of conceptualist Net.art on the aesthetics and politics of
code;
- in turn, the impact of Net.art aesthetics on experimental literature / poetry
in the Internet;
- the close affinity of Net.art with political activism in the Internet;
- which itself increasingly affiliates itself with an older, technical 'hacker'
culture (of Chaos Computer Club, 2600, etc.);
- the strong interest for (a) Free/Open Source Software and (b) network
protocol standardization in all these camps;
- the fact that hacker aesthetics, Net.art aesthetics, code aesthetics and
network protocol aesthetics have a tremendous impact on contemporary
writing in the Internet. (See the work of mez, Alan Sondheim, Talan
Memmott, Ted Warnell and others.)

I wll discuss how "Codeworks" (Alan Sondheim) fit notions of text that were crafted
without digital code (and most importantly: machine-executable digital code) in
mind and vice versa. Is it a coincidence for example that, reflecting the low-level
codes of the Internet aesthetically, codeworks ended up resembling concrete
poetry? And, apart from aesthetic resemblances, how do computer programs relate
to literature? Is that what is currently being discussed as "Software Art" a literary
genre?
Since many of these positions remain debatable, I would like to put up questions in
my presentation rather than give answers.

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

2

Code
In his abstract for this conference, John Cayley takes a position which to some
extent seems to be the opposite to mine. It's very exciting for me that we will have
a debate at this conference, and so I would like to make my point and clear up my
basic assumptions about the term ``code''.
Since computers, the internet and all digital technologies are based on zeros and
ones, they are based on code. Zeros and ones are an alphabet which can be
translated forth and back between other alphabets without information loss. The
internet and computers run on alphabetic code, whereas, for examples, images and
sound can only be digitally stored when translating them into code, which - unlike
the translation of conventional text into digital bits - is a lossy, that is, not fully
reversible and symmetric translation. In digital systems, literature is a privileged
symbolic forms for this very reason. We may automatically search a collection of
text files for all occurences of the word "bird", but doing the same with birds in a
collection of image files or bird songs in a collection of audio files is incomparably
tricky, nasty and error-prone - and relies after all on nothing else but artificial
intelligence algorithms which, by pattern recognition, translate image pixels and
sound waves back into text patterns.

The reverse is also true: We can perfectly translate digital data and algorithms into
non-digital media like print books, as long as we translate them into alphabetic
signs. This is exactly what is done, for example, in programming handbooks or in
technical specification manuals for Internet standards. Meanwhile, there are two
famous examples of a forth-and-back translation between print and computers:

1. The sourcecode of Phil Zimmerman's cryptography program ``Pretty Good
Privacy'' (PGP). The PGP algorithms were legally considered a weapon and
therefore became subject to U.S. export restrictions. To circumvent this
ban, Zimmerman published the PGP sourcecode in a book. Unlike
algorithms, literature is covered by the U.S. First Amendment of free
speech. So the book could be exported outside the United States and, by
scanning and retyping, translated back into an executable program.

2. The sourcecode of DeCSS, a small program which breaks the cryptography
scheme of DVD movies. Since U.S. jurisdiction declared DeCSS an ``illegal
circumvention device'' according to the new Digital Millennium Copyright
Act (DMCA), the ban equally affected booklets, flyposters and t-shirts on
whom the DeCSS sourcecode was printed.

So it is in fact terminological sloppiness if we speak of ``digital media''. Strictly
speaking, there is no such thing as digital media, but only digital information.

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

3

Today, an average personal computer uses magnetic disks (floppy and hard disks),
optical disks (CD-ROM and DVD-ROM) and chip memory (RAM) as its storage
media, and electricity as its transmission media. Theoretically, one could build a
computer with a printer and a scanner which uses books and alphabetic text as its
storage media.1 Punchcards in 1970s computing were actually similar to this, the
computer museum in Boston even features a mechanical computer built entirely
from wood.

Juxtapositions of ``the book'' and ``the computer'' are quite misleading, because
they confuse the storage media (paper vs. a variety of optical, magnetical and
electronical technologies) with the information (alphabetical text vs. binary code). It
also ignores, by the way, the richness of storage and transmission media in
traditional literature which, aside from the book, include oral transmission and
mental storage, audio records and tapes, the radio, to name only a few.

If there is, strictly speaking, no such thing as digital media, there also is, strictly
speaking, no such thing as digital images or digital sound. What we refer to as a
``digital image'', for example, is actually a piece of code which contains the machine
instructions to produce the flow of electricity with which an analog screen or an
analog printer displays an image.2 Of course it is important whether a sequence of
zeros and ones translates, into, say, an image because that defines its interpretation
and semantics. The point of my formalistic argumentation is not to deny this, but to
clarify that

1. when we speak of ``multimedia'' or ``intermedia'' in conjunction with
computers and digital art and literature, we actually don't speak of digital
systems in themselves, but about translations of digital information into
analog output and vice versa;

2. text and literature highly are privileged symbolic systems in these
translation processes because (a) their alphabetical signifiers can be
infinitely translated forth and back without information loss and (b)
computers factually run on them.

Literature and computers meet where alphabets and code, human language and
machine language intersect, rather than in the interfacing of analog devices through
digital control code we call multimedia. The computer does not extend literary
media in any way, because all those media - electricity, electrical sound and image
transmission etc. - existed before and without computers and digital information.

So I have to correct myself and the position I presented last year at this conference:
If we speak of digital poetry, or of computer network poetry, we don't have to speak
of certain media, and he don't have to speak of certain machines. If computers can
be built from broomsticks and if any digital data, including executable algorithms,

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

4

can be printed in books, there is no reason why computer network poetry couldn't
or shouldn't be printed as well in books.

Perhaps the term of digital ``multimedia'' - or better: ``intermedia'' - would be more
helpful if we redefine it as the the possibility to losslessly translate information from
one sign system to the other, forth and back, so that the visible, audible or tacticle
representation of the information becomes purely arbitrary. This can't be done
unless the information isn't coded in some kind of alphabet, whether it's
alphanumerical, binary, hexadecimal or Morse code.

Literature

Synthesis: putting things together
When we observe the textual codedness of digital systems, there is of course the
danger to generalize and project one's observations of digital code onto literature
as a whole. Computers operate on machine language, which is syntactically far less
complex than human everyday language. The alphabet of both machine and human
language is interchangeable, so that ``text'' - if defined as a conglomeration of
alphabetical signs - remains a valid descriptor for both machine code sequences
and human writing. In syntax and semantics however, machine code and human
writing are not interchangeable. Computer algorithms are, like logical statements, a
formal language and thus only a restrained subset of language as a whole.

However, it is a common mistake in my opinion to claim that (a) machine language
would be only readable to machines and hence irrelevant for human art literature
and (b) that, vice versa, literature and art would be unrelated to formal languages.

One should not forget that computer code, and computer programs, are not
machine creations and machines talking to themselves, but written by humans.3
The programmer-artist Adrian Ward suggests that we put the assumption of the
machine controlling the language upside down:

``I would rather suggest we should be thinking about embedding our own
creative subjectivity into automated systems, rather than naively trying to get
a robot to have its `own' creative agenda. A lot of us do this day in, day out.
We call it programming.''4

Perhaps one also could call it composing scores, and it does not seem accidental
to me that musical artists have picked up and grasped computers much more
thoroughly than literary writers. Western music is an outstandig example of an art
which relies upon written formal instruction code. Self-reflexive injokes such as ``B-

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

5

A-C-H'' in Johann Sebastian Bach's music, the visual figurations in the score of Erik
Satie's ``Sports et divertissements'' and finally the experimental score drawings of
John Cage shows that, beyond a merely serving the artwork, formal instruction code
has an aesthetic quality and complexity of its own. In many works, musical
composers have shifted instruction code from classical score notation to natural
human language. A seminal piece, in my opinion, is La Monte Youngs ̀ `Composition
No.1 1961'' which simply consists of the instruction ̀ `Draw a straight line and follow
it.''5 Most Fluxus performance pieces were written in the same notation style. Later
in 1969, the American composer Alvin Lucier wrote his famous ``I am sitting in a
room'' as a brief spoken instruction which very precisely tells to perform the piece
by playing itself back and modulating the speech through the room echoes.

In literature, formal instructions is the necessary prerequisite of all permutational
and combinatory poetry, which I spoke about last year. Kabbalah and magical spells
are important examples as well. But even in a conventional narrative, there is an
implict formal instruction of how - i.e. in which sequence - to read the text (which
maybe or followed or not, as opposed to hypertext which offers alternative
sequence on the one hand, but enforces its implicit instruction on the other).
Grammar itself is an implicit, and very pervasive formal instruction code.

Although formal instruction code is, as I said, only a subset of language, it is
nevertheless at work in all speech and writing.

But what seems remarkable about computing to me is that the namespace of
executable instruction code and nonexecutable code is flat. One cannot tell from a
snippet of digital code whether it is executable or not. This property does not stand
out in the alphabet of zeros and ones, but is solely dependent on how another piece
of code - a compiler, a runtime interpreter or the embedded logic of a
microprocessor - processes it. Computer code therefore is highly recursive and
highly architectural, building upon layers of layers of code.

Analysis: taking things apart
The fact that one cannot tell from any piece of code whether it is machine-
executable or not after all is the principle of all E-Mail viruses on the one hand and
of the net poetry of jodi, antiorp/Netochka Nezvanova, mez, Ted Warnell, Alan
Sondheim, Kenji Siratori and others that pretends to be viral machine code on the
other.

I would not attempt to make a theoretical point for the digital poetry as code poetry
here if it wasn't backed up by others' artistic practices and my own aesthetic
preferences in net poetry.

I think the ``codeworks'' (to borrow from Alan Sondheim) of these writers and
programmer-artists are prime examples for a digital poetry which reflects the

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

6

intrisic textuality of the computer. But it does so not by writing, to quote Alan Turing
via Raymond Queneau, computer poetry to be read by computers6, but by playing
with the confusions and thresholds of machine language and human language, and
by reflecting the cultural implications of these overlaps. The ̀ `mezangelle'' poetry of
mez/Mary Ann Breeze, which mixes programming/network protocol code and non-
computer language to a portmanteau-word hybrid, is an outstanding example of
such a poetics.

In comparison with the poetics of formal instruction like in La Monte Young's
composition 1961, in Fluxus pieces or permutational poetry, there is an important
difference: The Internet code poets do not construct or synthesize code, but they
use code they found and take it apart. I agree with Friedrich Block and the theses he
wrote for this conference that digital poetry must be seen in context of experimental
poetry in general. A poetics of synthesis was characteristic of combinatory and
instruction-based poetry, a poetics of analysis characterized Dada and its later
followers. But one hardly finds poetry with analytical approach to formal instruction
code in the classical 20th century avant-garde.7 Internet code poetry is being written
in a new - if you like, ``postmodern'' - condition of machine code abundance and
overload.

I said that there is no such thing as digital media and that digital code may be stored
in any medium; it doesn't surprise me that the codework poetry is an excellent
example to verify this thesis. Unlike hard-coded hypertext and multimedia poetry,
most of the artists I mentioned prefer to write plain ASCII text. This also reveals the
critical implication of its poetics and aesthetics. The poetics of hyperfiction and
multimedia poetry ran more or less parallel to the establishment of the World Wide
Web; hyperfiction authors rightfully saw themselves as its pioneers and, in the
course of nineties, continued to push the technical limits of both the Internet and
multimedia computer technology. Much digital art and literature became testbed
applications for new commercial browser features and multimedia plugins like
QuickTime, ShockWave and Flash, but by this locked itself into industry-controlled
closed code formats, thereby assuming an uncritical, after all affirmative role in the
proprietary reformatting of the Internet.

Shifting the focus of the reader back from slick multimedia interfaces to raw code,
code poetry appears to have strong aesthetical and political affinities to hacker
cultures. While hacker cultures are far more diverse than the singular term ̀ `hacker''
suggests8, hackers could as well be distinguished between those who put things
together (like Free Software and demo programmers) and those who take things
apart (like crackers of serial numbers and communication network hackers like the
Chaos Computer Club). Code poets have factually adopted many poetical forms
that were originally developed by various hacker subcultures from the 1970s to the
early 1990s, including ASCII Art, code slang (like ̀ `7331 wAr3z d00d'' for ̀ `leet [=elite]
wares dood'') and poetry in programming languages (such as Perl poetry), or they

http://www.dichtung-digital.de/2001/10/22-Cramer/index2engl.htm#tthFtNtAAG

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

7

even belong to both the ``hacker'' and the ``art'' camp, like my fellow speaker Walter
van der Cruijsen.

Conceptualist Net.art was, from its beginning on, engaged in a critical politics of the
Internet and its code, being closely affiliated with critical discourse on net politics in
such forums as the ``Nettime'' mailing list. In its aesthetics, poetics and politics,
codework poetry clearly departs from Net.art, not from hyperfiction and its Brown
University roots.

To resolve the title of my paper ``Digital Code and Literary Text'', I would like to
strongly argue in favor of considering both to be related and intertwined. Given that
literary text, and not digital code, is the reference measure, one can subscribe to this
without, as John Cayley seems to suggest, having to subscribe to Friedrich Kittler's
techno-determinist media theory; a theory which I consider a prime example of the
metaphysical trap Derrida describes in ``Écriture et différence'': Having replaced a
metaphysicial center (in Kittler's case that of ``Geist'' - spirit -, ``Geistesgeschichte'' -
intellectual history - and ``Geisteswissenschaft'' - humanities -) with a different one
(i.e.: technology, history of technology and technological discourse analysis).
Wrongly believing to have rid itself from metaphysics, it proceeds to write it under a
different label.

The subtitle of this text addresses an open question: ``Can notions of text which
were developed without electronic texts in mind be applied to digital code, and how
does literature come into play here?'' At the moment, I can answer this question at
best provisionally: While all literature should teach us to read and deal with the
textuality of computers and digital poetry, computers and digital poetry might teach
us to pay more attention to codes and control structures coded into language in
general. My list of musical compositions and literary forms is fragmentary in this
respect at best. For the generally thinking about language and text, program code
appears to amalgamate in itself two concepts which are traditionally juxtaposed
and unresolved in modern linguistics: the structure, as conceived of in formalism
and structuralism, and the performative, as developed by speech act theory.

References

[hun90] George Maciunas und Fluxus-Editionen, 1990.

[MB98] Harry Mathews and Alastair Brotchie, editors. Oulipo Compendium. Atlas
Press, London, 1998.

[Que61] Raymond Queneau. Cent mille milliards de poèmes. Gallimard, Paris, 1961.

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

8

Notes

1. Such a machine would operate slower than with magnetical or optical media,
but on the other hand provide more robust and durable information storage

2. Normally, this code is divided into three pieces, one - the so-called sound or im-
age file - containing the machine-independent and program-independent ab-
stract information, the second - the so-called display program - containing the
instructions to mediate the abstracted information in a machine-independent,
yet not program-independent format to the operating system, the third - the so-
called operating system -, mediating the program output to the output machine,
whether a screen or a printer. But these three code layers are nothing but arbi-
trary conventions. Theoretically, the ̀ `digital image'' file could in itself contain all
the code necessary to make itself display on analog end devices

3. No computer can reprogram itself; self-programming is only possible within a
limited framework of game rules written by a human programmer. A machine
can behave differently than expected, because the rules didn't foresee all situa-
tions they could create, but no machine can overwrite its own rules by itself.

4. quoted from an E-Mail message to the ``Rhizome'' mailing list, May 7, 2001

5. [hun90], no page numbering

6. [Que61], p.3

7. An exception being the the ALGOL computer programming language poetry
written by the Oulipo poets François le Lionnais and Noël Arnaud in the early
1970s, see [MB98], p.47

8. Boris Gröndahl's (German) Telepolis article ``The Script Kiddies Are Not Alright''
gives an excellent overview of the multiple camps associated with the term
``hacker'', "http://www.heise.de/tp/deutsch/html/result.xhtml?url=/tp/deutsch
/inhalt/te/9266/1.html"

	Digital Code and Literary Text
	Abstract
	Code
	Literature
	Synthesis: putting things together
	Analysis: taking things apart

	References
	Notes

