
Repositorium für die Medienwissenschaft

Irina Kaldrack, Martina Leeker u.a. (Hg.)
There is no software, there are just services
2015
https://doi.org/10.25969/mediarep/651

Veröffentlichungsversion / published version
Buch / book

Empfohlene Zitierung / Suggested Citation:
Kaldrack, Irina; Leeker, Martina (Hg.): There is no software, there are just services. Lüneburg: meson press
2015. DOI: https://doi.org/10.25969/mediarep/651.

Erstmalig hier erschienen / Initial publication here:
https://doi.org/10.14619/008

Nutzungsbedingungen: Terms of use:
Dieser Text wird unter einer Creative Commons -
Namensnennung - Weitergabe unter gleichen Bedingungen 4.0
Lizenz zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz
finden Sie hier:
https://creativecommons.org/licenses/by-sa/4.0

This document is made available under a creative commons -
Attribution - Share Alike 4.0 License. For more information see:
https://creativecommons.org/licenses/by-sa/4.0

https://mediarep.org
https://doi.org/10.25969/mediarep/651
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

 NO

 SOFTWARE

 SERVICES

 JUST

 KALDRACK

 LEEKER

There is no Software, there are just Services

Digital Cultures Series

Edited by Armin Beverungen, Irina Kaldrack,
Martina Leeker, Sascha Simons, and Florian Sprenger

A book series of the Digital Cultures Research Lab

There is no Software,
there are just Services
edited by

Irina Kaldrack and Martina Leeker

Bibliographical Information of the
German National Library
The German National Library lists this publication in the
Deutsche National bibliografie (German National Biblio
graphy); detailed bibliographic information is available
online at http://dnb.dnb.de.

Published 2015 by meson press, Hybrid Publishing Lab,
Centre for Digital Cultures, Leuphana University of Lüneburg
www.mesonpress.com

Design concept: Torsten Köchlin, Silke Krieg
Cover Image: © Lily Wittenburg

The print edition of this book is printed by Lightning Source,
Milton Keynes, United Kingdom.

ISBN (Print): 9783957960559
ISBN (PDF): 9783957960566
ISBN (EPUB): 9783957960573
DOI: 10.14619/008

The digital edition of this publication can be downloaded
freely at: www.mesonpress.com.

This publication was funded by the “Nie dersächi sches
Vor ab” pro gram of the Volks wa gen Foun da ti on, by the Minis
try for Science and Culture of Lower Saxony, and the
EU major project Innovation Incubator Lüneburg.

This Publication is licensed under CCBYSA 4.0
(Creative Commons Attribution ShareAlike 4.0 International).
To view a copy of this license, visit:
http://creativecommons.org/licenses/bysa/4.0/

Contents

 There is no Software, there are just Services:
Introduction 9
Irina Kaldrack and Martina Leeker

 “The Tail on the Hardware Dog”: Historical
Articulations of Computing Machinery, Software, and
Services 21
Christoph Neubert

	 The	Durability	of	Software 39
Seth Erickson and Christopher M. Kelty

 From Shrink Wrap to Services: The Universal Machine
and	Universal	Exchange 57
Andrew Lison

	 Service	Orientations:	Data,	Institutions,	Labor 73
Liam Magee and Ned Rossiter

	 The	Cloud,	the	Store,	and	Millions	of	Apps 91
Anders Fagerjord

	 Denials	of	Service 103
Jussi Parikka

Authors 113

 TECHNOLOGY

 PRACTICES

 INTERVENTIONS

 POLITICAL ECONOMY

 DISCOURSE ANALYSIS

 GOVERNMENTALITY

There is no Software,
there are just Services:
Introduction

Irina Kaldrack and Martina Leeker

Digital technologies permeate our daily lives. We access our social
networks and the content we produce both individually and col
laboratively, and other kinds of information from anywhere and
everywhere. Along with the fusion of computers and telephones
into smart, mobile devices, these practices are changing the con
cept and the materiality of software. In the past, shrinkwrapped
software, as it was called, had to be purchased, installed on a
personal computer (PC), configured, and updated regularly. Today,
however, it suffices to log on to a single platform and install a
service to easily access Dropbox, Facebook, Google, etc. In parallel
to the development of clouds, web services, and mobile apps on
the consumer market, “classic” software providers are moving
to subscription models in evergreater numbers: Adobe Creative
Suite becomes Adobe Creative Cloud and Microsoft Word
becomes Office 365. Software is no longer purchased, but rather
can be rented. The world of PCs, in which hardware is embodied
in an object and the operating system (OS) allows the user to
install and execute software, is being transformed. The hardware
is getting smaller and diversifying into netbooks, laptops, mobiles

10 and tablets. The possibilities for their use—formerly provided
by software in bundled applications and graphical user inter-
faces (GUI)—are now designed in cascades of services. The user’s
devices merely enable access to services that in turn, access
spatially remote hardware and control processes.

This development within the consumer domain corresponds to
a shift into Software as a Service (SaaS) for business. Accordingly,
companies can lease ITsupported administration services for
managing their employees, products, and customer data. Hence,
hardware purchases are limited to Internetenabled computers
with access to a SaaS provider. There are no expenses to be paid
in terms of servers or software, modifications or maintenance
by inhouse IT departments or external consultants. Instead, the
company merely pays access fees. This saves companies money
and time and allows them to concentrate on their core business,
as the sales pitch goes, and to generate greater profits. Beyond
that, promises are made regarding the services’ easeofuse,
since these business processes like “product ordering,” “delivery,”
or “payment receipt” are displayed and can be combined with rel
ative ease. This means there is no longer the need to have expert
knowledge of programming to optimise IT resources to one’s own
needs (see Neubert in this volume).

The publishers’ thesis, “There is no software, there are just
services,” describes this situation as a radical break with the
previous epoch: Hardware, once objectivized as a physical
computer, is becoming distributed across different data centers
and dissolving completely into infrastructures. And software, for
its part, has to date, controlled the spaciotemporal materiality of
hardware and offered up user interfaces, but it is dissolving in a
cascade of services that organize access to data and its process
ing. Ownership of software is thus becoming obsolete, replacing
goods as property through service use. This “useeconomy”
is open to all and promises empowerment: With these new
services, everyone has the potential to offer their skills and goods
for sale or exchange, as well as reinventing existing services

11through combination and modification. It is exactly this interplay
between entrepreneurial services and the rising “participatory
culture” that corresponds to a process in which any kind of aid or
help, personal service or favor—our normal, everyday practices—
can be subjected to the law of the economical (see Lison in this
volume).

The thesis and title of this this volume refers not only to a situ
ation of historical upheaval, but it may also be understood as a
confrontation with a significant systematic argument of media
science. The reference is of course Friedrich Kittler’s claim that
there is no software, but only hardware, because the technical
operations occurring within the computers could be reduced to
switches in the hardware, which are then merely made human
readable by the software (1992). Lev Manovich provoked Kittler’s
thesis with the technical historical diagnosis, “There is only
software” (2013, 147ff.), since all media forms, from photography
to painting, have meanwhile dissolved into software in the age
of digitalization. To describe the contemporary signature of
digital cultures as cascades of queries and operations that are
structured by bandwidth and connection speeds (see Parikka
in this volume) is less of a reference to a historical upheaval à la
Manovich (2013). As a variation of and commentary on Kittler’s
systematic argument, it is instead suggested here that there
could very possibly be no such thing as standalone hardware
either, because programs and hardware have always been linked
as services (see Neubert in this volume). Following Thomas Haigh,
one could go even further and say that hardware is part of a
complex system, comprising programs, support, documentation,
companies, distribution, engineers, and programmers, as well
as learning processes and practices (2002, 2013). Hence, the
following research hypothesis arises, referring to Kittler’s sys
tematic argument: Where hardware is part of a system in which
“services”—in the sense of negotiating the use and commod
ification of distributable software among multiple actors—are
crucial (Haigh 2013), it is not the technical conditions relating to

12 hardware or software technologies that determine the situ
ation, but rather politics and economies as well as practices and
cooperative constellations (Erickson and Kelty in this volume;
Gießmann and Schüttpelz 2015; Schmidt 2015).

The thesis, “There is no software, there are just services” is
thus apodictic and inadmissibly simplified. Of course, there are
products that are offered as software even in this age of services.
Furthermore, it is yet to be seen whether a radical shift will take
place from a software regime to the rule of services. But the
pointed assertion is provocative in such a productive way that
it practically forces the necessary detailed and sophisticated
observation of contemporary developments in the context where
services are ubiquitous, that it is likely to have a major stake in
the configuration of digital cultures. With their contributions,
the authors of this volume present this debate, which can be
structured into the areas of technology, practices, and economy.
Even if these different perspectives on services seem to overlap,
each focus nevertheless yields specific results. In a history of
technology informed by media and cultural studies, the inter
play between software, services, and hardware becomes clear,
quite contrary to the assertion that software does not (or no
longer) exist (Neubert; Erickson and Kelty; Magee and Rossiter;
Parikka). There have always been services, it is just that their
use and emphasis has changed (Haigh 2002, 2013). The strong
focus on practices (Fagerjord, Lison, Erickson and Kelty) as
well as the economy (Lison, Magee and Rossiter, Parikka) each
shows, in a different way, to what extent and with what con
sequences services as business models permeate other social
domains. Thus, this publication takes up positions found in
software studies that examine how different forms of software
are embedded into the contemporary world. Herein lie issues
of how software shapes subjectivities, commonalities, and
working forms and how it is modified by them (e.g., the online
journal Computational Culture; Fuller 2008 and Chun 2006, 2011).
By focusing on services and with a differentiated discussion of

13the concept in the narrower as well as the figurative sense, this
book provides initial orientation for researching services, as well
as for effective interventions in a “services culture.” The focus
on interventions follows from the supposition that the shift
toward services could lead to its own form of governmentality.
This calls for further investigation and is yet to be explored as a
level of critique of service cultures. With this in mind, each of the
following illustrations of the individual areas implies particular
options for intervention. This book aims to deal with the
phenomenon and research field outlines above, but by no means
claims to be exhaustive.

Technology

The contributions in this volume address the technological
nature of services from a technicalhistorical viewpoint. From
this perspective, the claim that an epochal upheaval is occurring
in the transition from software to services invokes an immediate
contradiction. As Christoph Neubert argues, what calls for
investigation is in fact the relation between hardware, software,
and services. This relation, namely, is negotiated anew for each
specific historical point in time and against the backdrop of
technological and economic developments. In this reconstruction,
software appears to be an instable element that mediates
between machine and business processes. The modularization
and encapsulation of program functions and the blackboxing of
those as services, interlocks technological continuities—from
object-oriented to agile programming—with conceptual and dis
cursive shifts. Seth Erickson and Christopher M. Kelty focus on
this interlocking of change and stability. Their heuristic approach
uses concepts from contemporary theory of evolution in order
to identify “patterns of change and stasis, patterns that tend
to preserve ancestry” (Erickson and Kelty, 42, quoting Wimsatt
and Griesemer 2007, 283). Rather than insisting that abstract
distinctions do exist between software and services, in the spirit
of Bruno Latour, they ask in which “modes of existence” (2013) do

14 different forms of software currently occur. Liam Magee and Ned
Rossiter have selected the historical development of databases
as a historical reference for their contribution. It becomes clear
in their recreation, how technological innovation from relational
and non-relational databases accompanies certain “politics of
parameters,” which in turn correspond to the policies of the
organization and knowledge production, regulation, and control.
Jussi Parikka takes his cue from Virilio (1999 [a], 1999 [b]) and
looks at the disruption and collapse of services, namely through
denial-of-service (DoS) attacks. In this way, he clearly demon
strates the technological conditions on which SaaS are based:
bandwidths, transfer speeds, and the efficient management of
traffic come to the fore and reveal how network policy application
is involved.

These historical reconstructions point out the moments at which
the technological conditions shape the transitions from software
to services and their respective regimes. Thus, they signal pos
sibilities for intervention within the interplay of technology,
practices, political economy, and discursivations.

Practices

Services exhibit a twofold relation to practices. First, the
technological procedures within the service architectures dictate
ways of programming as well as communicative and economic
transactions. Thus, the use of files changes, according to Erickson
and Kelty (49f.), through the use of apps: These do not just con
stitute the only access to one’s own content in the cloud, they
also fuse files to users, accounts, and platforms at the same
time. Second, user practices have a reciprocative impact on the
technology. Andrew Lison thus describes how the subscription
model of Adobe’s Creative Cloud makes the illegal cracking
of licensed software, like Photoshop, practically impossible.
This development seems to be a technical solution to prevent
undesirable practices.

15Anders Fagerjord shows how a differentiated picture of a
technical culture of services can only be arrived at by looking at
practices. He looks at the practices of app culture and exposes it
as a part of services. The promise of the app industry that apps
should be easy to program and use, as well as freely available,
is quickly deconstructed, if one looks at the network of actors
participating in app production. Contrary to the promises, a
monopolization may be on the rise, as the economic policy of
Apple demonstrates. These apps can only be programmed and
used on Apple devices and are only available via the Apple App
Store. Following actornetwork theory (ANT), Fagerjord develops
a model for analyzing how the combination of different actants
and their interests can modify or even undermine the industry’s
service infrastructure.

Focusing on the practices shows that and how these are designed
as operations and operation chains and can thus become trans
latable into services. By equating these, the productive moment
in the interaction of a reciprocative influence of technology,
economy, and practices disappears. This is what Lison and
Fagerjord highlight to differentiate the software from the service
culture. From Fagerjord’s refined analysis, based on ANT methods
and insights, one could deduce degrees of freedoms, which could
help users to defend themselves against being forced into uni
formity inside the service regime and to interrupt the cascade of
services.

Political	Economy

If one focuses on the economic and social effects of the transition
from software to services, the promises of companies operating
these applications disintegrate rather quickly—promises
like freedom and efficient time management. Rather, a new
paradigm becomes clear, one that is revealed to be a regime of
an allencompassing service policy (Magee and Rossiter) and
service economy (Lison). Markus Krajewski has made important

16 preliminary contributions to our understanding of why and how
technical structures and practices can turn into overarching
regimes (2010, 2014). In relation to the question of whether a
regime could form a service economy, Krajewski shows that
applying metaphors is an integral component of the history
of distributed computing—which is what the “service principle”
referred to here, was called until the 1970s (2014). Metaphors
like service, server, clientserver architecture, or desktop, are
used in information technology to make abstract technologies
accessible, according to Krajewski. He points out that in the
process, however, the metaphors unleash their own medial
and culturetechnical power such that technical, economic, and
practical development gets promoted via the conceptual horizon
of the metaphors in which these technologies are packaged. The
metaphoric use of services is consequently not at all innocent but
rather a constructive factor of service economies.

In their chapter, Magee and Rossiter point out that the
orientation toward service above all entails a policy of control
and regulation, which is not only focused on the organization of
work but the whole environment itself, as the idea of smart cities
demonstrates. The authors point out that since this regime of
services goes hand in hand with the expansion of infrastructures
that would style themselves as black boxes, it is difficult to
arrive at a position outside the system. For Andrew Lison (67f.),
services and infrastructures are becoming an ineluctable con
dition of existence in digital cultures, where they lead us hitherto
unknown forms of work, remuneration, and ways of living. Such
an example is the service, TaskRabbit, where highly qualified
freelancers offer their services over platforms, either to their
neighborhood or on the global market; from design through
picking up groceries to babysitting. Business with services is
quick, selforganizing, and purportedly both the freelancers and
customers are happy with it. According to Lison, the problem with
this, however, is that the differences between various professions
and forms of work (immaterial, material, socialaffective) are

17dissolving and being bundled into the radical economical impetus
we euphemistically call the “exchange economy.” Lison tells us
this means neither goods, values, nor economic interpersonal
relations exist in this regime, but rather only business exchanges
that are no longer explicitly declared as such, and omnipresent,
neverending services. Drawing on Lison’s argument, one could
emphasize his diagnosis by saying both providers and customers
become service slaves.

Regarding the issue of how the service regime could be inter
rupted, it becomes clear that attacks on services are not an
option because they have long been integrated into the system.
The denialofservice attack is used by Jussi Parikka to demon
strate the technical foundations of service network politics, which
comprise server capacity, the protocols of data traffic as well as
bandwidths and the distribution of connection speeds. Parikka
suggests that users of services relinquish control over their
businesses, communication, and identities, and thus fall prey to
the unstable infrastructural conditions distributing the services
as well as being victims of the diplomacy of approvals and
blockages of services instead of pursuing politicallygrounded
and legitimate regulation. Parikka hones his assessment of the
consequences into the thesis: “There are no services, there
are just vouchers” for access to services. He suggests that it is
thus conceivable that a regime of services for services is being
established in which access to the latter must first be enabled
and secured via the former.

Areas	of	Interest	for	Interventions

In discussing the thesis “There is no software, there are just
services,” the economic perspective offers a lessthanencour
aging finding. Google and Salesforce.com partnered up in 2008
with the slogan: “Put your office into the cloud!” (Salesforce.com
2008). The aim was to create a profitable business model with
apps and software for company collaboration—and it was to

18 have been limited to this arena. However, this book claims that
different service forms and technologies were indeed culminated
into one service regime. This can be highlighted by posing the
question: How can a business model and a corporate advertising
slogan configure everyday digital matters as a regime of services
and infrastructures, which furthermore gets promoted in self
organization, as demonstrated by activities performed by the
mass of freelancers who are fixated on the sharing economy (see
Lison)? In turn, both Neubert’s and Erickson and Kelty’s analyses,
which are informed by media and cultural studies, show that one
can only partially speak of a paradigmatic break with traditional
software politics and the rise of a service regime. This insight
can aid, i. e., in breaking through discursively, economically,
and praxiologicallygenerated service logics. Even a look at the
practices in the action field of services reveals a space for inter
ruption in the service regime where a pluralization of action
instances can be described and thus suggests a relativation of the
grand corporate promises of software as service (Fagerjord).

The broad and coarsely grained thesis therefore opens a
productive tension for scientific analysis, one that unfurls
between thinking through the consequences of servicetechno
logics, and deconstructing service regime discourses and
technologies. With this in mind, it is possible to develop methods
for intervening in the services landscape, and to identify pos
sibilities for counteraction. Looking at the various aspects of
services this way becomes necessary due to the signs that eco
nomic primacy is preparing to supersede the technical options as
well as the practices that are not primarily economic and thereby
to escalate into its own form of governmentality. The creation
of such a governmentality may even be enabled by the users
and constitute the services being conducted. The users may be
invoking and organizing their own selfexploitation. All the while
they are in control of their own selfdetermination and socalled
participation as a policy of access to services at the technical and
infrastructural levels.

19Thank you to our colleagues on the editorial board, Marcus Burk-
hardt and Andreas Kirchner from meson press, as well as our
research student, Leon Kaiser.

Bibliography

Chun, Wendy. 2006. Control and Freedom: Power and Paranoia in the Age of Fiber
Optics. Cambridge, MA and London: MIT Press.

Chun, Wendy. 2011. Programmed Visions: Software and Memory. Cambridge, MA and
London: MIT Press.

Computational Culture. A Journal of Software Studes. Accessed July 15, 2015. http://
computationalculture.net/.

Fuller, Matthew. 2008. Software Studies: A Lexicon. Cambridge, MA and London: MIT
Press.

Gießmann, Sebastian, and Erich Schüttpelz. 2015. „Medien der Kooperation.
Überlegungen zum Forschungsstand.” Navigationen 15 (1): 7–54.

Haigh, Thomas. “Software in the 1960s as Concept, Service, and Product.” IEEE Annals of
the History of Computing 24 (1): 5–13.

Haigh, Thomas. “Software and Souls. Programs and Packages.” Communications of
the ACM 56 (9): 31–34.

Kittler, Friedrich. 1992. “There is no Software.” Stanford Literature Review 9 (1): 81–90.
Krajewski, Markus. 2010. Der Diener. Mediengeschichte einer Figur zwischen König und

Klient. Frankfurt am Main: S. Fischer.
Krajewski, Markus. 2014. “Dienstleistungsagenturen. Zur Delegation von Handlungs

macht zwischen Subalternen und SoftwareServices.” In: Programm(e), edited by
Dieter Mersch and Joachim Paech. Medienwissenschaftliche Symposien der DFG,
125–157. Zürich and Berlin: Diaphanes.

Latour, Bruno. 2013. An Inquiry into Modes of Existence: An Anthropology of the
Moderns. Cambridge, MA: Harvard University Press.

Manovich, Lev. 2013. Software Takes Command. New York and London: Bloomsbury.
Salesforce.com. 2008. “Salesforce.com und Google erweitern Partnerschaft: Sales

force for Google Apps: Erste Anwendungssuite für komplettes “Office in the
Cloud.“ Press release. http://www.salesforce.com/de/company/newspress/
pressreleases/2008/04/080414.jsp.

Schmidt, Kjeld. 2015. “Of Humble Origins: The Practice Roots of Interactive and Col
laborative Computing.” Zeitschrift für Medienwissenschaft. Web Specials. http://
www.zfmedienwissenschaft.de/online/humbleorigins.

Virilio, Paul. 1999. Politics of the Very Worst. New York: Semiotext(e).
Wimsatt, William C., and James R. Griesemer. 2007. “Reproducing Entrenchments

to Scaffold Culture: The Central Role of Development in Cultural Evolution.” In
Integrating Evolution and Development: From Theory to Practice, edited by Roger
Sansom and Robert N. Brandon, 227–323. Cambridge, MA: MIT Press.

 SERVICE-ORIENTED ARCHITECTURE

 AGILE PROGRAMMING

 CLOUD COMPUTING

 SOFTWARE HISTORY

 UNBUNDLING

 TIME-SHARING

 MEDIA ECOLOGY

“The Tail on the Hard-
ware Dog”: Historical
Articulations of
Computing Machinery,
Software, and Services

Christoph Neubert

The emergence of service-oriented business models
in	the	computer	industry	over	the	last	15	years	is	
part of broader historical dynamics underlying the
relations between hardware, software, and services.
This	article	traces	the	changing	configurations	of	
this triad with a particular focus on the economic,
technological, and social construction of “software”
in exemplary contexts. The historical evidence opens
analytical and critical perspectives on the current
rearticulation of software in terms of “services.”

There is no software. It strikes one as a historical paradox that this
claim, defended by Friedrich Kittler in the early 1990s with critical
rigor against the ideology of human control over seemingly trans
parent computer hardware (Kittler 1992, 1993, 2014), resonates
with business models hailed by today’s computer industry under
the labels of Software as a Service (SaaS) and Service-oriented
Architecture (SOA). Taking this paradox seriously, I will consider
the idea of an epochal transition from software to services
pursued by the present volume under a broader historical
perspective, starting with the observation that the distinction
between hardware, software, and services does not lie in the
nature of things, but is a product of complex historical processes.
In essential respects, the current convergence of software and
services reverses a historical development: The proposition
that there is no software but only services describes a situation
characteristic of the computer industry until the 1970s. The sup
posed decline of software has thus to be evaluated in the light
of the emergence and transformation of “software” as technical
artifact, economic good, and social dispositive. Witnessing its
disappearance, the question arises: How did software come into
being in the first place?

Systems and Programs

In the context of computing, the first usage of the term “software”
in print is ascribed to the statistics professor John W. Tukey
in 1958 (Shapiro 2000). The word was probably coined earlier
verbally and in working papers, perhaps by Paul Niquette in the
1950s (Niquette 2006), or already in the late 1940s by the RAND
mathematician Merrill Flood (Cerruzi 2003, 365, 372). However,
according to the Oxford English Dictionary, the word “software”
came into broader use not before the early 1960s, referring to
the “body of system programs, including compilers and library
routines, required for the operation of a particular computer
and often provided by the manufacturer, as opposed to program
material provided by a user for a specific task” (OED).

23

[Fig. 1] “Tin Canned Software” (Cybermatics 1971).

As this description already suggests, the historical notion of
software crucially differs from our present understanding in
several respects (cf. Haigh 2012). In a narrower sense, the con
cept comprised systems software such as operating systems,
assembly systems, programming tools and compilers. In a wider
sense, software was taken to include media such as punched
cards and magnetic tapes, but also written documentation and
even human activities such as system analysis or training. Being
linked closely to computer hardware on the one side, and to all
sorts of services on the other, software did not cover what we
take as its essence today, namely applications. A second aspect
distinguishing the historical from the present understanding is
that software was not originally a commercial product: Operating
systems (OS), utilities, and programming tools were provided
free of charge by the hardware manufacturers, being considered
part of general services a firm bought or rented together with
a hardware installation. Programs for specific business tasks
such as payroll, file systems, or accounting, on the other hand,

24 were highly customized and usually written inhouse by the data
processing staff of the firms.

For a long time, software represented “only the tail on the hard
ware dog” (Bender 1968, 243). Accordingly, the software industry
emerging since the mid1960s was marginal and provided
programming services rather than standardized products. Even
where programs were offered as “canned” solutions (Figure 1),
the proposed deal included hardware infrastructure, training,
and customization. First attempts to acquire programs that had
been developed by individual firms and sell them on a license
basis as packaged applications to other customers in the same
business were not undertaken before the late 1960s, and with
little success (Brown 2002; Head 2002). Even providing a cata
logue of useful software solutions did not meet the customers’
needs or expectations (Welke 2002). The idea to pay for software,
especially for standardized products that were not even adapted
to a firm’s specific requirements, seemed to make no sense. The
often cited “software crisis”of the 1960s manifested in scarcity
of qualified personnel (Ensmenger 2010, 51ff.), but questions of
structured product design and the Taylorization of coding labor
in an emerging software industry did not become relevant before
the 1970s. Indeed, the term software engineering in the sense of
“the professional development, production, and management of
system software” (OED) was first used in 1968 (Mahoney 2004).

Time Sharing

The bias towards services characteristic of the computing
industry of the 1950s and 1960s was largely due to enormous
hardware costs. Large mainframe and minicomputers rep
resented expensive infrastructures that were supplied to cus
tomers in terms of a “computer utility rhetoric.” Just as electricity
consumers did not keep their own power plants, “it would be
cheaper and more reliable for organizations to buy information
processing from a service provider, rather than owning a

25mainframe computer” (CampbellKelly and GarciaSwartz 2007,
752). The technology underlying this service model is known as
time sharing. The concept of time sharing was developed in the
late 1950s, mainly motivated by the aim to make efficient use of
expensive mainframe computers by avoiding idle times. Time
sharing refers to the (seemingly) simultaneous access of multiple
users that are connected via terminals to a central computer,
technically based on the flexible allocation of CPUtime to con
current user processes. The first experimental implementation,
the Compatible Time Sharing System (CTSS), was deployed at the
MIT in 1961 on an IBM 709 computer, followed in 1963 by the
CTSS II on an IBM 7094 that allowed access of 30 remote users
(Auerbach 1973, 65). Further time sharing systems were devel
oped in the following years for various platforms by IBM, by Bolt,
Beranek, and Newman, and by General Electrics in cooperation
with Dartmouth College.

Evolved in universities and research centers, the technology
of time sharing translated readily into a business model. The
first commercial provider, Adams Associates, appeared in 1963,
followed by IBM in 1964 (Auerbach 1973, 65). Even with the advent
of IBM’s System/360 in the same year, computing hardware
remained expensive and installations time and resource con
suming, so only larger administrations and firms could afford
to rent or even buy the respective equipment and keep the
required personnel. Many smaller companies outsourced their
data processing activities and took recourse to the services of
time sharing providers, who offered remote access over public or
private data lines to computing infrastructure including hard
ware, programming environments (e.g. for COBOL, FORTRAN,
and BASIC), software packages, file storage, and print services.
Customers typically rented the required terminal equipment and
were charged for parameters such as CPUtime, connection time,
and storage volume.

26 Unbundling

The emancipation of a dedicated software industry from the
previous economy of hardware and services involved two
major steps. The first step was the emergence of the enter
prise software sector since the 1970s, which was accompanied
by a variety of technological, economic, and social innovations,
including the standardization of products, new business and
marketing models, a changing mentality of customers, profes
sionalization of programmers, the rise of software engineering
and corresponding methods such as structured programming
and the systematic reuse of code in terms of software libraries,
the development of interpreters and compilers for highlevel
computer languages, and the introduction of affordable and
compatible hardware systems such as the IBM S/360 series (cf.
Johnson 2002; Goetz 2002a, 2002b).

The efforts it took to invent software as an economic good and
product in its own right is impressively illustrated by the incidents
that led IBM to give up the practice of bundling programs with
hardware and services. On January 17, 1969, the U.S. Depart
ment of Justice filed a suit against IBM, charging the company
with monopolizing the generalpurpose computer market; the
bundling of services, software and machinery was taken to be
anticompetitive and illegal. It took the Antitrust Division six years
to bring the case to trial in 1975, and it lasted another six years
before it was finally dropped in 1982, then considered to have
been “without merit” (cf. Johnson 1982; Kirchner 1982). However,
in preparation of one of the longest and costliest antitrust trials
in history, some 30 billion pages of paperwork were provided.
During the trial,

Some 2,500 depositions were taken in all, and IBM compiled
and stored in special warehouses 66 million pages of
evidence. At the lawsuit’s peak, more than 200 IBM lawyers
were working on the case, on whom the company spent
tens of millions of dollars annually. […] The parties called

27974 witnesses […] and produced 104,400 pages of testimony.
(Anthes 1989, 65)

While the case was negotiated, IBM issued internal directives sup
pressing the description of programs as products:

We should realize that discussing [applications] programs
separate from the machines in advertising or presentations
is inconsistent with our fundamental position that hardware
and software including programs are an indivisible product
[...]. (cited in Arnst 1977, 4)

On the other hand, IBM reacted very fast to the legal issues
raised by the Justice Department. An “unbundling task force”
had already been formed in 1966 in the context of introducing
the S/360 series (cf. Grad 2002; Humphrey 2002), and on June 23,
1969, IBM announced its decision to pursue separate pricing of
hardware, software, and services. This date has been taken as the
birth of the software industry or “Independence Day for software
firms” (Gibson 1989, 6), though in retrospect, it is more likely that
IBM’s decision was not the cause but rather a symptom or effect
of an emerging business sector. In any case, the unbundling affair
provides a striking impression of the complexities raised by the
emancipation of software.

Mass Markets and Pricing Models

After the quarrels in the enterprise sector during the 1960s and
1970s, the second major step towards software as a product is
linked to the growing impact of the personal computer (PC) since
the 1980s, which opened a mass market for consumer software
(cf. CampbellKelly 2001). The PC served as host for packaged
software applications offered to customers in shrink-wrapped
boxes, and this software in turn played an important role for the
domestication of computer hardware, its integration into the
environments of offices and private households. At the same
time, the concepts of layered architecture and protocol stacks

28 as formulated in the OSIreference model allowed to establish
basic standards for the interconnection of computers, initiating
the transition of the terminalmainframe logic of enterprise
computing towards the clientserver logic of intranets and the
Internet. Networked computing and the WWW opened new
software markets for client and server operating systems (Novell
Netware, Microsoft NT), web browsers (Netscape, Microsoft), web
publishing software (Macromedia, Adobe), and antivirus software
(Symantec).

The Internet business soon blurred the distinction between the
economic sectors of services, enterprise software, and consumer
software in the reverse order of their historical appearance:
massmarket vendors such as Microsoft entered the enterprise
software business, and later both consumer and enterprise
software vendors turned to services (cf. CampbellKelly and
GarciaSwartz 2007, 736f.). The Internet also enabled new forms
of collaborative work on programs leading to the Open Source
movement. The impact of Open Source and “free” software, in
particular of Linux, together with other trends such as the rise
of mobile media and gadgets, the crash of the Internet economy
around 2000, and the increasing commoditization of hardware
and proprietary software led to the decline of the software
product paradigm established in the 1980s and to new strategies
of value generation. One interesting development in this con
text is the appliances model that returns to the idea of bundling
proprietary software and hardware as a boxed product (Hein
2007). Appliances in this sense include consumer products such
as game consoles, mp3players, navigation devices, and per
sonal gadgets of all sorts, but also enterprise appliances such as
routers, or dedicated equipment for email and firewall services.
Another strategy employs marketing platforms for nonsoftware
products such as music downloads or ebooks, the streaming
of multimedia content, the promotion of social and business
services, or the bundling of “free” software with advertising.
These changes indicate a general turn of the computer industry

29from vertical to horizontal integration and an orientation towards
downstream revenues and services. The remaining software
vendors were accordingly driven towards new pricing models:

Traditional product sales and license fees have declined, and
product company revenues have shifted to services such as
annual maintenance payments that entitle users to patches,
minor upgrades, and often technical support. (Cusumano
2008, 20).

Besides payment for maintenance, the classic onetime upfront
license fee has been replaced by subscription or payperuse
models that ensure a constant revenue stream, even during
economic downturns. Such pricing models have far reaching
consequences for the planning, versioning, and maintenance
of products (Olsen 2006). In particular, since the development
of new software releases and upgrades is mainly motivated by
marketing requirements “creating the illusion of a new product
to justify the repeated resale of what is fundamentally the
same good” (268), the subscription model eliminates the dis
ruptive effects of release cycles. On the other hand, software
subscription tends to generate a lockin of customers, which is
problematic especially for small firms and freelancers (see Leis
tert 2013 on the example of current policies adopted by Adobe).

Architecture of the Cloud

Quite different from promoting subscription under the guise of
a “service” is the idea to provide the functionality of software
applications in terms of web services: Instead of deploying a
copy of software to be installed and run on the customer’s site,
the vendor hosts the software on his own servers and provides
access via the Internet. This business model is highly dependent
on technical factors such as network and server performance
and thus leads to the more recent paradigm of cloud computing.
According to the definition provided by the U.S. Department
of Commerce’s National Institute of Standards and Technology

30 (NIST), cloud computing comprises three levels of services (Mell
and Grance 2011): Infrastructure as a Service (IaaS) refers to the
provision of computing resources (processing, storage, networks)
that can be configured like onsite hardware and used by the
customer to “run arbitrary software, which can include operating
systems and applications” (3). The underlying virtual machinery is
in turn running on a distributed cloud infrastructure with pooled
resources. The model Platform as a Service (PaaS) refers to vir
tual development environments that already include operating
systems together with “programming languages, libraries,
services, and tools supported by the provider” (2f.). SaaS, finally,
represents the highest integration level of cloud computing.
The customer here uses the functionality of services without
managing any infrastructure on the levels of operating systems,
development environments, or application software (cf. Gajbhiye
and Shrivastva 2014; Crago and Walters 2015).

Technically, the implementation of SaaS conforms to the frame
work of Serviceoriented Architecture (Laplante, Zhang and Voas
2008). SOA extends the logic of object-oriented programming
to commercial services, turning from algorithms and control
structures to software components that are defined in terms of
specific properties, functions, and interfaces; these components
shall interact without central control in the context of distrib
uted software systems. A web shop, for example, may invoke
a number of services offered by different vendors, including
database management, payment services, and logistical services,
each in turn drawing on a number of subordinate services such
as processing web forms, recommendation systems, or tracking
options. These components are only loosely coupled, i.e. during
an individual process, services are invoked on demand, their
discovery, selection and binding being accomplished “on the fly”
in a nonpredictable way (cf. Turner, Budgen, and Brereton 2003;
Gold et al. 2004). Activities in this context are no longer con
ceived as traditional programming; central process metaphors

31instead refer to aesthetic practices in the domains of music and
dance—“composition,” “choreography,” and “orchestration.”

In economic terms, SOA and SaaS neatly integrate with the man
agement of business processes. The composition of services
is accomplished by specific software tools such as the Business
Process Modeling Language (BPML), an XMLbased standard which
is supposed to provide an efficient translation between economic
and computational workflow. BPML was later succeeded by the
Business Process Execution Language for Web Services (WSBPEL),
developed mainly by IBM and Microsoft and elevated to an
industry standard by the OASIS consortium (Organization for the
Advancement of Structured Information Standards) (cf. Turner,
Budgen, and Brereton 2003; Candan et al. 2009). In this context,
software has not only ceased to be a product, it also no longer
represents a tool employed to accomplish specific business tasks:
rather, both domains seem to converge in fulfillment of the old
cybernetic dream that business itself becomes a matter of pure
programming (i.e. music and dance).

Hidden Environments

The historical sketch provided so far might contribute to our
understanding of the current service orientation in several ways:
First of all, it becomes evident that the boundaries between hard
ware, software, and services, as well as the relations between
the three domains, are fluid and subject to permanent his
torical change in conceptual, technological, and economic terms.
Second, while hardware on the one hand and services on the
other, fit into the classical definition of economic goods and rep
resent fairly stable concepts, the status of software has always
been problematic. Since its value depends on configuration, cus
tomization, maintenance, and training, software remains closely
coupled to services. The emancipation of the shrinkwrapped
box seems to represent a transitional phase, and even in the
consumer market, complex and costly applications are replaced

32 today by cheap apps that in many cases function as interfaces
to remote services. Third, in economic terms, there is no clear
cut distinction between products and services, which rather
represent the endpoints of a continuum. Different business
models may rely on different strategies to “servitize” products
or to “productize” services (Cusumano 2008, 26). Taken together,
there seem to be no simple linear trends, but circular or other
dynamics that govern the relations between hardware, software,
and services, on micro as well as on macroeconomic levels (cf.
Cusumano 2003, 2008; Suarez, Cusumano, and Kahl 2013). Thus,
the present boom of software and computer infrastructure as
services can be regarded as a renaissance of essential aspects of
the hardware and services computing economy of the 1950s and
1960s.

After all, there is no software. Kittler’s speculative and hyperbolic
dictum, formulated in the heyday of packaged bit boxes, was
obviously inspired by personal experience with personal
computers running Microsoft operating systems. But it was
meant more generally, pointing to an inevitable strategic delusion
rendering invisible the politics and power relations inscribed in
hardware. Today, hardware and software retreat from the focus
of “user experience” and are supposed to become part of the
environment—the “cloud” as a kind of encompassing atmos
pheric metaphor, or smaller spheres such as the city, the home,
clothes, or the human body. Before Mark Weiser formulated
the agenda of Ubiquitous Computing, the late Marshall McLuhan
emphasized the environmental logic of media, drawing on the
example of the motor car. McLuhan claimed that the medium is
not the vehicle, but the infrastructure, which he further described
as a “hidden environment of services” (McLuhan 2005, 242). Thus
from the beginning, the concept of “service” links the economy
to an ecology of media—a managed ecology, however, of the
cybernetic type, which is tuned towards operational closure
and blackboxing. In particular, while software promises flexible
control over hardware in terms of algorithms, services stand

33for the possibility of flexible control over algorithms in terms
of functions. While software encapsulates hardware, services
encapsulate both hard and software. In the era of services, both
hardware and software are running in protected mode.

Coding Services

So what are the real political and ecological conditions of infra
structures? What are the material and energetic resources of the
cloud, how are they managed, where, and by whom? How are
working conditions in software industries transformed by the
service paradigm? As a case in point, we might consider methods
such as Extreme Programming (XP) or Agile Programming (AP)
(Beck 1999; Beck et al. 2001) that are historically and system
atically linked to SOA and cloud computing (Guha and AlDabass
2010; Baliyan and Kumar 2014). Following the requirement of
high responsiveness to changing demands, traditional devel
opment and production cycles are given up in favor of a general
acceleration of workflow. The “agile” paradigm departs from
central principles of structured programming and the factory
model of software production, considering thorough planning
and extensive documentation as harmful. The “Agile Manifesto”
and related commentaries (Beck et al. 2001) read as a peculiar
combination of working methods with moral values, yielding a
work ethic tuned towards efficiency, productivity, and customer
satisfaction. While emphasizing categories such as “individuality,”
“freedom,” and “respect,” many of the recommended principles
and methods are in fact reminiscent of the theory of “egoless
programming” formulated in the late 1960s by Gerald Weinberg
(Weinberg 1971, 47ff.; cf. Ensmenger 2010, 212–217).

For example, in smaller projects, all team members should be
present in the same room, maintain permanent communication,
and practice selfmonitoring and mutual correction, which is
encouraged especially by pair programming in XP. Tasks and
roles are flexibly assigned and supposed to change, team

34 members are brought into direct contact with customers in
order to react immediately to their feedback. Programmers
are not rewarded for individual skills and competences, but for
personal involvement. Work is accomplished by the team as a
collective subject. Hierarchies are as flat as possible, central con
trol should be avoided. Thus, in many respects, agile and related
programs amount to a convergence of coding technologies and
technologies of the self (cf. Neubert 2016). And obviously, the
economic ideas of choreography, objectoriented programming,
neat cycles, binding on the fly, and flexible work flow, return
on the level of programming practices. Like other parts of the
service infrastructure, human programmers belong to a pool
of resources that are disposable and responsive on demand.
In agile methods, the cloud becomes selfreferential. Not by
coincidence, Human Capital Management (HCM) is one of the most
profitable services. While structured programming was linked to
a Taylorization of software engineering (Mahoney 2004), “agile”
programming and related approaches represent a next step
towards neoliberal, perhaps even postliberal methods of coding
subjects.

After all, there surely is a lot of software. So we might have to
adjust Kittler’s heuristics: There are no services.

Bibliography

Anthes, Gary H. 1989. “Rearview Mirror.” Computerworld, March 2: 63–65.
Arnst, Catherine. 1977. “Bundled Pricing Illegal, 1968 IBM Memo Admits.”

Computerworld 11 (48), November 28: 1, 4.
Auerbach. 1973. Auerbach Guide to Time Sharing. Philadelphia, PA: Auerbach

Publishers.
Baliyan, Niyati, and Sandeep Kumar. 2014: “Towards Software Engineering Paradigm

for Software as a Service.” IC3, 2014 Seventh International Conference on Con-
temporary Computing (IC3): 329–333.

Beck, Kent. 1999. Extreme Programming Explained: Embrace Change. Reading, MA:
AddisonWesley.

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon

35Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas. 2001. “Manifesto for Agile Software Development.” agileman-
ifesto.org. Accessed April 1, 2015. http://agilemanifesto.org/.

Bender, David. 1968. “Computer Programs: Should They Be Patentable?” Columbia
Law Review 68 (2): 241–259.

Brown, Walter. 2002. “Founding Atlantic Software.” IEEE Annals of the History of
Computing 24 (1): 80–82.

CampbellKelly, Martin. 2001. “Not Only Microsoft: The Maturing of the Personal
Computer Software Industry, 1982–1995.” The Business History Review 75 (1)
(Computers and Communications Networks): 103–145.

CampbellKelly, Martin, and Daniel D. GarciaSwartz. 2007. “From Products to
Services: The Software Industry in the Internet Era.” The Business History Review
81 (4): 735–764.

Candan, K. Selcuk, WenSyan Li, Thomas Phan, and Minqi Zhou. 2009. “Frontiers in
Information and Software as Services.” IEEE 29th International Conference on Data
Engineering (ICDE): 1761–1768.

Ceruzzi, Paul E. 2003. A History of Modern Computing. 2nd Edition. Cambridge, MA;
London: The MIT Press.

Crago, Stephen P., and John Paul Walters. 2015. “Heterogeneous Cloud Computing:
The Way Forward.” Computer 48 (1): 59–61.

Cusumano, Michael A. 2003. “Finding Your Balance in the Products and Services
Debate.” Communications of the ACM 46 (3): 15–17.

Cusumano, Michael A. 2008. “The Changing Software Business: Moving from
Products to Services.” Computer 41 (1): 20–27.

Cybermatics. 1971. "Tin Canned Software." Advertising. © Cybermatics Inc.
Computerworld 5 (46), November 17, 1971: 39.

Ensmenger, Nathan. 2010. The Computer Boys Take Over. Computers, Programmers,
and the Politics of Technical Expertise. Cambridge, MA; London: MIT Press.

Gajbhiye, Amit, and Krishna M. Shrivastva. 2014. “Cloud computing: Need, Enabling
Technology, Architecture, Advantages and Challenges.” Confluence. The Next
Generation Information Technology Summit. 5th International Conference 25-26 Sept.
2014: 1–7.

Gibson, Stanley. 1989. “Software industry born with IBM’s unbundling.”
Computerworld 23 (25), June 19: 6.

Goetz, Martin. 2002a. “Memoirs of a Software Pioneer: Part 1.” IEEE Annals of the His-
tory of Computing 24 (1): 43–56.

Goetz, Martin. 2002b. “Memoirs of a Software Pioneer: Part 2.” IEEE Annals of the His-
tory of Computing 24 (4): 14–31.

Gold, Nicolas, Andrew Mohan, Claire Knight, and Malcolm Munro. 2004. “Under
standing ServiceOriented Software.” Software, IEEE 21 (2): 71–77.

Grad, Burton. 2002. “A Personal Recollection: IBM’s Unbundling of Software and
Services.” IEEE Annals of the History of Computing 24 (1): 64–71.

Guha, Radha, and David AlDabass. 2010. “Impact of Web 2.0 and Cloud Computing
Platform on Software Engineering.” International Symposium on Electronic System
Design ISDE 2010: 213–218.

36 Haigh, Thomas. 2002. “Software in the 1960s as Concept, Service, and Product.” IEEE
Annals of the History of Computing 24 (1): 5–13.

Head, Robert V. 2002. “The travails of Software Resources.” IEEE Annals of the History
of Computing 24 (1): 82–85.

Hein, Bettina. 2007. 0+0=1: The Appliance Model of Selling Software Bundled with Hard-
ware. Master Thesis, Massachusetts Institute of Technology.

Humphrey, Watts S. 2002. “Software Unbundling: A Personal Perspective.” IEEE
Annals of the History of Computing 24 (1): 59–63.

Johnson, Bob. 1982. “Justice Department Decides IBM Case ‘Without Merit ’.”
Computerworld 26 (3), January 18: 1, 8.

Johnson, Luanne. 2002. “Creating the Software Industry: Recollections of Software
Company Founders of the 1960s.” IEEE Annals of the History of Computing 24 (1):
14–42.

Kirchner, Jake. 1982. “Bigness not Bad, Baxter Explains.” Computerworld 26 (3),
January 18: 1, 8.

Kittler, Friedrich. 1992. “There is no Software.” Stanford Literature Review 9 (1): 81–90.
Kittler, Friedrich. 1993. “Es gibt keine Software.” In Writing/écriture/Schrift, edited by

Hans Ulrich Gumbrecht. München: Fink.
Kittler, Friedrich. 2014.”Protected Mode.” In Kittler, The Truth of the Technological

World: Essays on the Genealogy of Presence. Translated by Erik Butler, 209–218.
Stanford, CA: Stanford University Press.

Laplante, Phillip A., Jia Zhang, and Jeffrey Voas. 2008. “What’s in a Name? Dis
tinguishing between SaaS and SOA.” IT Professional 10 (3): 46–50.

Leistert, Oliver. 2013. “Mietmodell Software Adobe.” Pop. Kultur & Kritik 3: 39–42.
McLuhan, Marshall. 2005 [1974]. “Living at the Speed of Light.” In Marshall McLuhan.

Understanding Me. Lectures and Interviews, edited by Stephanie McLuhan and
David Staines, 225–243. Cambridge, MA: MIT Press.

Mahoney, Michael Sean. 2004. “Finding a History for Software Engineering.” IEEE
Annals of the History of Computing 26 (1): 8–19.

Mell, Peter, and Timothy Grance. 2011. The NIST Definition of Cloud Computing: Rec-
ommendations of the National Institute of Standards and Technology. U.S. Depart
ment of Commerce. NIST Special Publication 800–145.

Neubert, Christoph. 2016. “Software/Architektur. Zum Design digitaler
Dienstbarkeit.” In Dienstbarkeitsarchitekturen. Vom Service-Korridor zur Ambient
Intelligence, edited by Markus Krajewski. Tübingen: Wasmuth. (forthcoming)

Niquette, Paul. 2006. “Softword: Provenance for the Word Software.” niquette.com.
Accessed April 1, 2015. http://www.niquette.com/books/softword/tocsoft.html.

OED. S.v. “software, n.” Oxford English Dictionary Online. http://www.oed.com/view/
Entry/183938.

Olsen, Eric R. 2006. “Transitioning to Software as a Service: Realigning Software
Engineering Practices with the New Business Model.” Service Operations and
Logistics, and Informatics. SOLI ‘06. IEEE International Conference, 21-23 June 2006:
266–271.

Shapiro, Fred A. 2000. “Origin of the Term Software: Evidence from the JSTOR Elec
tronic Journal Archive.” IEEE Annals of the History of Computing 22 (2): 69–71.

37Suarez, Fernando F., Michael A. Cusumano, and Steven J. Kahl. 2013. “Services and
the Business Models of Product Firms: An Empirical Analysis of the Software
Industry.” Management Science 59 (2): 420–435.

Turner, Mark, David Budgen, and Pearl Brereton. 2003. “Turning Software into a
Service” Computer 36 (10): 38–44.

Weinberg, Gerald. 1971. The Psychology of Computer Programming. New York, NY: Van
Nostrand Reinhold.

Welke, Lawrence. 2002. “Founding the ICP Directories.” IEEE Annals of the History of
Computing 24 (1): 85–89.

 SOFTWARE

 SCAFFOLDING

 GENERATIVE ENTRENCHMENT

 EVOLUTION

 DEVELOPMENT

 MAINTENANCE

 DURABILITY

The Durability of
Software

Seth Erickson and Christopher M. Kelty

Software is neither material nor immaterial but
durable,	entrenched	and	scaffolded.	In	this	article	
we suggest that services and software should be
understood through the diverse forms of durability
and temporality they take. We borrow concepts from
evolution and development, but with a critical eye
towards the diagnosis of value(s) and the need for
constant maintenance. We look at examples from
diverse cases—infrastructural software, military
software,	operating	systems	and	file	systems.

Our goal this week is the conversion of

mushyware to firmware, to transmute our

products from jello to crystals.

(Alan J. Perlis in NATO, 138)

A Software Coelacanth

In April 2014, a 60 Minutes report made a brief splash when it
revealed that the United States live nuclear weapons arsenals
are using “antique” software and hardware, such as floppy disks,
microfiche and radiograph data and software written in the
1970s. The Internets mocked the hopelessly outdated technology;
John Oliver’s studio audience for Last Week Tonight audibly gasped
when he showed them the image of a missileer holding an 8inch
floppy disk. Oliver’s commentary: “Holy Shit! Those things barely
look powerful enough to run Oregon Trail, much less earthending
weaponry.”

Many people accustomed to constant updates, rapid release
cycles, betatesting and automatic upgrades found the story
shocking—viscerally so since it concerns the deadliest weapons
on earth. The “silver lining,” as a Vice article put it, quoting Major
General Jack Weinstein, was that “cyber engineers [who analyzed
the network last year] found out that the system is extremely
safe and extremely secure in the way it ’s developed” (Richmond
2014). The dramatic tension is thus driven by something unstated
(that newer technology is always safer, better, more efficient
than old, legacy systems) in conflict with something intuitive (that
it makes very good sense not to connect these weapons to the
Internet).

The software and hardware systems that run these 1970s era
Minuteman launch control systems are a kind of technological

41coelacanth: a living fossil. Isolated, highly engineered, rigorously
(one hopes) maintained, but never upgraded or changed. Con
trast this with what we might think of as the cichlids of con
temporary software: mobile apps, games, websites, APIs and
services that appear hourly, where updates are constant and the
rate of extinction equally rapid.1 The rise of Software as a Service
(SaaS), Service-oriented Architecture (SOA) or the cloud seems to
suggest that a qualitative shift towards a kind of hyperinsta
bility is taking place: instead of a stable program nothing but a
temporary relationship of queries across interfaces and devices,
rendering something that was immaterial even more airy and
vaporous. It would seem to follow that our economy and culture
are also becoming similarly cloudy—precarious, uncertain, dis
tant, contracted.

The apparent transition—from software to services—raises a
question: are they different? What is the difference, and how best
is that difference described? On the one hand, one might assert
that there is no difference at all because the concept of service
was built into software from the very beginning. Indeed, before
the word or the object software existed, there were programming
services.2 Software had to be unbundled and productized to achieve
a stability and singularity we colloquially attribute to things
like Microsoft Word or Adobe Creative Suite. Whether it be the
computer utility of the 1960s or the thin clients and netPCs of the
1980s when Sun declared “the network is the computer,” services
have been a constantly desired goal all along. On the other hand,
services today appear quite different: the ease of reconfiguration,
the openness of their accessibility, the standardization of their
functioning, and the reliance on a datacenterascomputer
model all seem to turn software, databases, archives, indeed

1 Cichlids are common, rapidly diversifying fish, comprising between 2000 and
3000 species, including things like Angelfish and Tilapia, and exhibiting a
stunning diversity in morphology and behavior.

2 On software services see CampbellKelly and GarciaSwartz (2011), Campbell
Kelly (2009). Chun (2011) also makes this point.

42 even whole companies into ephemeral conduits of information,
query or control. Stable productized software disappears in place
of unstable, contractual arrangements—Adobe Creative Suite
becomes Adobe Creative Cloud, Microsoft Word becomes Office
365—replete with a shift from a sense of ownership to one of
servitude.

But the desire to fix the difference between the two falls into an
ontological trap—demanding that the difference between the
two be an abstract one of properties and kinds (and rights) rather
than one of temporality and use amongst humans. Software
studies occasionally suffers from a philological fantasy that
the conditions of operation of software are territorialized by
programmability, rather than the programmability of software
being terrorized by time. Software and service are thus an entan
gled set of operations which are better viewed from the per
spective of duration and temporality, and in particular that of an
evolutionary frame, than from the perspective of code, conduit,
circuit, network, or other aspects that privilege a spatiality or an
intellectual abstraction that relies on spatiality to make sense of
it.

So in between the coelacanth of the MinuteMan missile
software, and the cichlids of the Apple App Store lies a whole
range of software existing at different temporalities and
with different levels of durability. An evolutionary approach
makes sense here, but not simply in order to describe this
diversification, but to critically analyze where and how value
and values—novelty, most centrally, but also security, safety,
freedom, health or risk—are structuring these temporalities.
“Evolution is not just any change and stasis, but particular
patterns of change and stasis, patterns that tend to preserve
ancestry” (Wimsatt and Griesemer 2007, 283, emphasis added).

We are far from alone in turning to the ideas of evolutionboth
those who create software and those who study it frequently
do so. For instance, within the field of software engineering, the

43language of software evolution often replaces that of repair and
maintenance.3 And socalled “artificial life” researchers have
long fallen prey to the fantasy that because a program evolves
it must be alive (Helmreich 1998; Riskin 2007). More recently,
Lev Manovich, among others, has adopted a loose language of
evolutionary theory—but only, he insists, as a metaphor—to
explain change over time in the domain of mediaproduction
software (Manovich 2013).

Our exploration of evolutionary theory is not metaphorical, but
critical and analytic, viz. how to analyze populations of software
differentially, and in order to diagnose the values, ideologies
or cultural technologies at work in and through software. Our
focus is not on code or the program, but on the population of
software—as engineers might say, the installed base of software,
which necessarily implies an ecology of users, designers,
maintainers, as well as organizations and physical facilities that
must be kept running: made durable.

The durability of software is not an internal feature of a particular
software program or service, nor a feature of an abstract
programmability or mathematical facet, but instead a feature of
its insertion into a social, economic and cultural field of intention
and expectation where it becomes differently. The Minuteman
silo stays stable for reasons that are different than the “sta
bility” of the Linux kernel (which changes often, in the name of a
stability that maintains an unknowable range of possible uses).

3 See for example the Journal of Software Maintenance, so called until 2001,
when it was renamed the Journal of Software Maintenance and Evolution, until
2012, when it merged with Software Process and Improvement to become The
Journal of Software: Process and Evolution. There are countless examples of
the colloquial use of the term evolution in software engineering, but there
are also more precise attempts to characterize software evolution, primarily
as an analysis of the internal evolution, or ontogeny, of a program (facilitated
by the technology of versioning control systems) such as Mens and Demeyer
(2008). There is also a ubiquitous phylogenetic obsession amongst software
programmers visible in the array of trees documenting the descent of
different software, e.g. Lévénez’s Unix chart (2015).

44 The becoming of a service such as Facebook Connect is much
different than the simple query API provided by the Oxford English
Dictionary. Both are services, both depend on money and humans
who care about them—but the dynamics of their evolution and
stasis are much different from each other.

Evolution therefore is not just a theory of change or duration—it
is also about how aspects of the past are preserved differentially
in different ecologies. Software does not evolve the same way
everywhere—like life it is constantly diversifying. Recognizing
variation, heterogeneity, and the preservation of the past in the
present can serve an important analytical and critical function: to
identify the values, ideologies and cultural technologies that keep
some systems stable and slowly changing while demanding that
others seem to change “at the speed of thought.”

Software is not immaterial—this much is clear to anyone who
studies it. But nor is software a substance. The replacement of
software by services, if such a replacement is actually occurring,
may be interpreted less as an ontological or material shift, and
more as a shift in the relationships of concurrency, dependency
and durability—software too has “modes of existence” (Latour
2013).

In this article we borrow two notions from developmental
evolutionary theory in order to think about the patterns of
change and stasis in software: generative entrenchment and
scaffolding. Wimsatt and Griesemer use these terms in order
to argue for a developmental understanding of cultural and
biological evolution, as opposed to a strictly gene/meme centered
(á la Dawkins) one or a “dualinheritance model” (Richerson and
Boyd 2005). This is felicitous given the concrete fact that software
is always paired with the word development—though we ought to
be careful distinguish a “developmental biology of software” from
software development as an established methodology. We argue
here that durability—perhaps even “enduring ephemerality”
as Chun (2011, 167–173) calls it—is a result of robustness and

45generative entrenchment—viz. when software becomes
foundational or otherwise locked into a network of uses and
expectations, signaled by maintenance—another key term in
our analysis—and driven by particular cultural and economic
value(s). Maintenance of software, as software professionals
often recognize, is not quite the same as maintaining a bridge or
freeway: it is not about wear and tear or the failure of particular
bits of software. Rather it is about keeping software in synch with
changes and dependencies made in other software and systems
(Ensmenger 2014).

Layers,	Stacks,	Entrenchments,	Scaffolds	

In most engineering textbooks, information systems are layered
into stacks—often a pyramid—with material, physical layers on
the bottom and an increasing ephemerality as one ascends.4
Such layers do exist, but they are hardly ever so clean. In fact, it
can sometimes be harder, more expensive or more dangerous
to change a bit of software than the hardware or the infra
structure on which it is supposedly layered or stacked. Generative
entrenchment is a real feature of developmental entanglements,
one that generates innovations by virtue of the very necessity
of the entangled part or function.5 How these entanglements
came about is a not preordained or mechanical: it is matter for
historical research into the development of a project, the spread

4 There are numerous meanings of the term stack in the history of software.
Sometimes it refers to an abstract data type in a programming language
(adding something to a memory stack); sometimes it refers to a layering of
different technological features, as in a protocol stack; and a more recent,
more colloquial usage (e.g. solution stack) includes the range of tools—
programming languages, package managers, database, libraries—that make
up a particular web framework used for rapidly building and deploying
apps in different contexts. What they share is the attempt to capture how
software is always stacked, layered or interconnected in progress. No
software is an island, etc.

5 Blanchette (2011) discusses the example of modularity ’s effects on cross-
layer innovation.

46 of software, the standards guiding them (or failing to), and the
reliance on expectations about the future of other components
in a system, and the values organized in lines of force around a
given software system.

Scaffolding as a concept serves a related analytical purpose.
In building, scaffolding is necessary but ultimately disappears
when a structure is complete (thought it often reappears for
maintenance). In developmental psychology, scaffolding happens
when people provide boundaries within which others can learn
and develop skills. As they repeat these skills, the boundaries
become less necessary. In the process of software testing,
something similar happens: tools representing these boundaries
(use cases, testing suites, different software environments
like browsers, or common failure scenarios) are constructed
around the software to test how it responds—as it is revised and
improved these testing systems are torn down and disappear.
As the software stabilizes and becomes more robust, it becomes
generatively entrenched amongst other software systems and
tools. Something of this process is captured by the process
known ubiquitously in software engineering by the name of boot-
strapping: the use of one software system to design or construct
another that either supplements or replaces it. Similarly, beta
testing might also be interpreted as using real users (or early
adopters) as scaffolding.

The appeal to these developmental evolutionary concepts is
not proposed simply in order to provide a description of pure
dynamics, complex or simple. Rather, by identifying dynamics
and patterns, we can show how the values and the logics
operate: some entrenched software is maintained and some is
not, and maintenance implies a set of values that require critical
interpretation (Jackson 2014; Orr 1996). Not all software is
maintained because it is economically valuable—Minuteman III
missile systems, for instance, or the software that runs a power
grid. Failing to maintain it may have economic effects, but it is
maintained primarily in virtue of other values: security, safety,

47health, mobility, secrecy, etc.6 Even “archived” software must
be maintained, and represents particular values: preservation,
recovery, evidence (Kirschenbaum 2008).

Beyond Old and New

It should not come as a surprise that there is great diversity in the
world of software. What is surprising is that we have no good way
of taxonomizing it—or studying it—other than the language of
old, outdated, or obsolete vs. “cutting edge” or new. The language
of innovation privileges the linear and the incremental over the
spread of diversity or the interaction of different temporalities.
The supremacy of the value of novelty or innovation is a
peculiarly modernist and Western notion: novelty at all costs!
And it implies a similar and opposite mistake: to think of the old
as similarly linear and incremental—as deposited, archived, for
gotten and in need of constant renewal. In fact, the perspective
of evolution demands a perception of newness everywhere
and in many different forms that persist: the past is not super
seded, but preserved, differentially and in response to a changing
ecology (consisting of other things that are similarly new and old
at the same time).

The key critical or analytic moment therefore is not the
identification of the new, but the identification of a distinct
population—a kind of curatorial maneuver—the drawing of
boundaries around a set of instances of the same kind such that
diversity and differentiation are made to appear. A few examples
might indicate a different path for how to study software.

To begin with: particular populations of operating systems (OS) are
arguably the most entrenched—and most generative—aspect

6 In fact, there is a relatively robust economic niche where “obsolete”
software is maintained, e.g. The Logical Company (2015) which recreates
“hardware, software and diagnostic compatible” versions of DEC’s 1970s PDP
computers, giving that software a new temporality and durability

48 of our software ecology. They come in many forms, from the
consumerfocused iOS and Android mobile OS (which is on
the order of 10 years old) to UNIXderived operating systems
(which are on the order of half a century old). Add to this the
various populations that are in some ways both old and new. The
OpenVMS and Alpha operating systems were originally designed
in 1970s for DECVAX computers, but are still in use in old, new,
updated, emulated and migrated forms; OpenVMS runs India
Railways’ reservation system and the Paris Metro’s automated,
driverless line 14.7

Similarly, entrenched programming languages (COBOL and
FORTRAN) were at the heart of the Y2K hysteria. Although the
predicted apocalypse did not come, it did reveal the problem of
maintaining software—both its costs, and the kinds of values
(in this case, fear of apocalypse) that are necessary to disembed
entrenched software. Military systems, public infrastructure,
factory process control (SCADA) systems, all contain various
forms of entrenchments and dependencies—some of which
are revealed dramatically (e.g. the case of the Stuxnet virus),
some of which are revealed only slowly through maintenance or
breakdown.

Entrenchment and scaffolding can also make sense of the variety
of basic tools in use by software programmers—from compilers
like gcc to programming languages, libraries and their bindings.
The latter—language bindings—are a good example of generative
entrenchment. Libraries of commonly used code in an operating
system are often written in particular languages, such as C, C++
or assembly, often to facilitate reuse, and sometimes to make
code more efficient (an algorithm in C can be made to run much
faster than one in Perl, for instance). But because these libraries
are “entrenched” in the operating system, they “generate” the
need for bindings: bits of code that access and sometimes

7 See for example HewlettPackard Invent (2002) and Wikipedia contributors
(2015).

49recompile a library for use with another programming language.
Old technologies “scaffold” new ones: stories of programmers’
need to rewrite a program in another language (whether for
efficiency or elegance, or to access parts of an entrenched
system) are everyday evidence of the scaffolding process.

Indeed, in 2015, the range of new programming languages
and frameworks for rapidly building and deploying software
have created vast but fragile webs of entrenchment and inter
dependency. Web programming frameworks like Drupal and
Ruby on Rails are rapidly evolving—the underlying programming
languages (e.g., Ruby and php) are relatively new, the frame
works themselves are evolving as their developers refine their
approaches to the web, and (perhaps most importantly) the
individual modules and plugins for extending these frameworks
lead to a kind of “dependency hell.” One commentator (Hartig
2014) reflecting on this historical difference in software said
“compiling a C program from more than 20 years ago is actually a
lot easier than getting a Rails app from last year to work,” a clear
indication, as evolutionary theory predicts, that innovations are
abundant, but not necessarily advantageous.

Some kinds of software are not generatively entrenched, even if
they persist in time or remain durable. The Minuteman missile
base is an example—no other software or hardware depends on
the software created to control those missile launch facilities, but
it is nonetheless durably maintained as a closed system.

Other software is maintained because it is entrenched—both
technically and culturally. Take for instance the whole system
of software that makes an abstraction of a file possible: file
systems, memory allocation, attributes and permissions, and
directory hierarchies. As the authors of a Microsoft Technical
Report (Harper et al. 2011) point out, the concept of file as a unit
of data with associated attributes (e.g., ownership, permis
sions) and canonical actions (copy, edit, delete) has proven to be
remarkably robust, changing little over the last forty years. Most

50 operating systems are built around files, which manage allocation
of memory and access to data; pipes and files were central to
the design of UNIX, which treats everything as a file, including
external devices like printers (accessed through device files).
Humans are also built around files: we expect them to function
in particular ways, to be stable and findable, to be ownable and
sharable.

Although the file is a seemingly essential concept, it is challenged
by service oriented computing or cloud computing where a new
kind of “social” data is associated with files, and where files exist
simultaneously on multiple devices. In this case it is not so much
a particular piece of software code, but an essential “abstraction”
(and an implied set of interoperable components) that is
entrenched both in the hardware, and in the expectations of
users. It is generative because the file cannot simply be replaced
in toto, but rather must be “piecewise” reengineered, guided by
particular values.

Blanchette’s example (2011) of the Google File System dem
onstrates that even if the file is not what it used to be, we
still need the abstraction as a way to get the file to appear
manipulable and stable on a set of virtualized servers (preserving
it, and further entrenching it). Engineers might agree that there
are “better” ways to do things, but the file cannot be so easily dis
embedded from both human and machine consciousness.

But: it is changing. Scaffolding can help us see how. iOS and
Android operating systems both “hide” files from users. They are
not yet gone—the OS still relies on them—but are embedded
inside an app which has very quickly become the primary mode
of interacting with software on most devices (Apple 2014). It is
very hard to “open a file” on a phone or iPad, because the system
is designed to hide files and metadata about files inside an app—
which is now intended to be the primary abstraction for humans.
For most purposes, however, apps do not require users to open
or close important files, and they solve the question of “where is

51my stuff?” by putting it inside the app (and “in the cloud”). This
creates a kind of scaffold whereby users can change from an
understanding of apps that open files, to one where apps have
data and resources tied to users, accounts and devices. Some
populations change faster than others.

This transition, however, is not simply an evolutionary fact.
Rather, by understanding the generative entrenchment and
scaffolding of files and apps, we can turn a more critical eye on
what are otherwise simply dubbed technological or engineering
concerns. Among other things, the file abstraction supports a
particular model of property rights in which digital objects are
literally designed around stable property ownership: files must
have owners and permissions. Apps, by contrast, are designed
around a different field of rights and laws: contracts and terms of
service—specifically nonnegotiable contracts in which the app
provider has significantly more rights than the app user.

This is the “cultural technique” at the heart of the transition
from software to services: 20th century intellectual property
rights law was designed for intangible property fixed in “tangible
media” and the myriad ways in which media was so fixed in the
era of Film, Gramophone, Typewriter (Kittler 2006). Contract law,
by contrast is not about a relationship between the intangible
and the tangible, it is about the fixed duration of a relationship
of trust, and a way of structuring the future in terms of liability
and responsibility. It is not an either/or situation, but as more and
more users enter into contracts, instead of purchasing property,
the software itself changes to support this cultural practice.

Apodosis: Legacy

The word legacy is one with a precise meaning in the history of
information technology. Legacy systems are every IT manager’s
bogeyman; they are the cause of lock-in they are the emblem of
the evils of proprietary software; they are the cause of Y2K bugs
and the scourge of cybersecurity, they represent the evils of

52 corporate capitalism, the domination against which free software
and Open Source are often pitched in battle.

But if evolution is “particular patterns of change and stasis
that preserve ancestry” then there is no way out of a legacy.
Not all legacies are equally momentous, however, just as not
all inheritances are equally large. We would do well to develop
a better understanding of how ancestry has been and is pre
served in software systems, if we want to make any claim that
innovations like SaaS actually represent some break with the
past. On the contrary—some services will become entrenched;
the seemingly flexible solution stack of today is the legacy system
of tomorrow. Even more importantly, there is no single legacy,
but a pattern of differences: a diversification with respect to
environment. And if we want to analyze the difference these
differences make, we must move away from treating software as
substance—whether material substance or thought substance:
program, code, algorithm.

Actor Network Theory makes a simple point here: we do not live
in a world with humans as the foundation, nor in one simply run
by the automaticities of machines, but in a world of relations and
modes. The difference that software makes depends on how it is
inserted into the relations amongst our associations—but it is not
inserted the same way everywhere. The effect of software—the
difference it makes—depends on the “patterns of change and
stasis which preserve ancestry” at play in any given case.

Thinking in terms of scaffolding and generative entrench
ment might be an antidote to the relentless antihumanist
teleology so common in both popular and scholarly thinking.
That teleology—a kind of neoSpencerianism—is driven by
punditry and criticism that demands of software (and technology
generally) that it obey a law of evercomplexifying, everaccel
erating progress towards either the domination of some
imagined allpowerful capitalism or the liberationdestruction

53of some fantasized autonomous artificial intelligence.8 This
Refrain of Constantly Accelerating Change contains a grain of
truth—software has enabled new patterns, new durabilities—but
it misses the existence of diversity in the world, and the ways in
which it preserves ancestry. To view software evolution as an
institutionally and culturally heterogeneous object might allow us
to critically diagnose its real effects, rather than running ahead to
the next new thing in order to declare its sudden dominance, and
the irrelevance of all the rest.

We thank the Part.Public.Part.Lab members for valuable con-
versation and feedback, Irina Kaldrack and Martina Leeker for
incisive comments, and the Digital Cultures Research Lab of Leu-
phana University for the invitation to contribute

Bibliography

Apple. 2014. “File System Basics.” iOS Developer Library. Accessed May 23, 2015.
https://developer.apple.com/library/ios/documentation/FileManagement/Con
ceptual/File SystemProgrammingGuide/FileSystemOverview/FileSystemOver
view.html.

Blanchette, JeanFrançois. 2011. “A Material History of Bits.” Journal of the American
Society for Information Science and Technology 62 (6): 1042–1057.

Bogost, Ian. 2015. “The Cathedral of Computing.” Atlantic Monthly, January 15.
Accessed May 25, 2015. http://www.theatlantic.com/technology/archive/2015/01/
thecathedralofcomputation/384300/.

CampbellKelly, Martin. 2009. “Historical reflections: The Rise, Fall, and Resurrection
of Software as a Service.” Communications of the ACM 52 (5): 28.

CampbellKelly, Martin, and Daniel D. GarciaSwartz. 2011. “From Products to
Services: The Software Industry in the Internet Era.” Business History Review 81
(4): 735–764.

Chun, Wendy. 2011. Programmed Visions: Software and Memory. Cambridge, MA: MIT
Press.

8 See, for example, Ian Bogost ’s oped on the subject “The Cathedral of
Computation” (2015).

54 Ensmenger, Nathan. 2014. “When Good Software Goes Bad: The Surprising
Durability of an Ephemeral Technology.” In MICE (Mistakes, Ignorance, Con-
tingency, and Error) Conference. Munich. Accessed May 23, 2015. http://homes.
soic.indiana.edu/nensmeng//files/ensmengermice.pdf.

Harper, Richard, Eno Thereska, Siân Lindly, Richard Banks, Phil Gosset, William
Odom, Gavin Smith, and Eryn Whitworth. 2011. What Is a File? Microsoft Research
Technical Report MSR-TR-2011-109. Redmond, WA.

Hartig, Pascal. 2014. “Building Vim from 1993 Today.” SVBTLE. Accessed May 23, 2015.
http://passy.svbtle.com/buildingvimfrom1993today.

Helmreich, S. 1998. “Recombination, Rationality, Reductionism and Romantic
Reactions: Culture, Computers, and the Genetic Algorithm.” Social Studies of
Science 28 (1): 39–71.

HewlettPackard Invent. 2002. “Success Story.” Accessed May 25, 2015. http://
h71000.www7.hp.com/openvms/brochures/indiarr/.

Jackson, Steven J. 2014. “Rethinking Repair.” In Media Technologies: Essays on
Communication, Materiality and Society, edited by Tarleton Gillespie, Pablo J.
Boczkowski, and Kirsten A. Foot: 221–239. Cambridge, MA: MIT Press.

Kirschenbaum, Matthew. 2008. Mechanisms: New Media and the Forensic Imagination.
Cambridge, MA: MIT Press.

Kittler, Friedrich A. 2006. Gramophone, Film, Typewriter. Stanford, CA: Stanford Uni
versity Press.

Latour, Bruno. 2013. An Inquiry into Modes of Existence: An Anthropology of the
Moderns. Cambridge, MA: Harvard University Press.

Lévénez, Eric. 2015. “Unix History.” Accessed May 23, 2015. http://www.levenez.com/
unix/.

Manovich, Lev. 2013. Software Takes Command: Extending the Language of New Media.
London: Bloomsbury Publishing.

Mens, Tom, and Serge Demeyer. 2008. Software Evolution. New York, NY; London:
Springer.

Nato. 1968. “Software Engineering.” Report on a conference sponsored by the NATO
SCIENCE COMMITTEE. October 7–11, Garmisch. Accessed May 27, 2015. http://
homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.

Orr, Julian E. 1996. Talking About Machines: An Ethnography of a Modern Job. Ithaca,
NY: ILR Press/Cornell University Press.

Richerson, Peter J., and Robert Boyd. 2005. Not by Genes Alone: How Culture Trans-
formed Human Evolution. Chicago, IL: University of Chicago Press.

Richmond, Ben.2014 “America’s Nuclear Arsenal Still Runs Off Floppy Disks.” Moth-
erboard (Vice Magazine), April. Accessed May 23, 2015. http://motherboard.vice.
com/read/americasnucleararsenalstillrunsofffloppydisks.

Riskin, Jessica. 2007. Genesis Redux: Essays in the History and Philosophy of Artificial
Life. Chicago, IL: University of Chicago Press.

The Logical Company. 2015. “Home.” Accessed May 23, 2015. http://www.logicalco.
com/.

55Wikipedia contributors. 2015 “Paris Métro Line 14.” Wikipedia: The Free Encyclopedia.
Last modified May 24, 01:58 CET. Accessed May 25, 2015. http://en.wikipedia.org/
wiki/Paris_M%C3%A9tro_Line_14.

Wimsatt, William C., and James R. Griesemer. 2007. “Reproducing Entrenchments
to Scaffold Culture: The Central Role of Development in Cultural Evolution.” In
Integrating Evolution and Development: From Theory to Practice, edited by Roger
Sansom and Robert N. Brandon, 227–323. Cambridge, MA: MIT Press.

 SHRINK-WRAP SOFTWARE

 SERVICE ECONOMY

 MULTIMEDIA

 COMMODITY CULTURE

 DIGITAL MEDIA

 MULTIMEDIA

From Shrink Wrap to
Services: The Universal
Machine and Universal
Exchange

Andrew Lison

The shift within digital media from software to
services represents a level of ubiquity above and
beyond that of multimedia, the digital’s relation of
previously-existing forms of media within its binary
system of equivalence, and into the relation of social
relations themselves. In this sense, it both mirrors
and complements the global spread of capitalism,
which also seeks to make both goods and relations
equivalent (but not equal) through the money form.
Tracing this shift, this chapter examines connections
between the development of end-user Software as a
Service and the service economy enabled by mobile
apps like Uber and TaskRabbit to argue that “service”
in this context should be understood as the universal
medium’s extraction of value from the increasingly
universalized process of exchange.

Information is the key commodity in the

organizational logic of protocological control.

(Galloway and Thacker 2007, 57)

The digital is a totalizing force. The history of its development
as medium, which is equally the history of its development as
concept, is the progressive subsumption of previously existing
methods, media, and, eventually, relations into fundamentally
binary logics of (re)production and transmission. Thus, when
Friedrich Kittler asserts that “There is no Software,” he does so
in order to highlight the capabilities (and, ultimately, limitations)
of Turing’s universal machine, wherein the potential for this sub
sumption resides, as opposed to any individual program, which
can only represent a particular instance of it (Kittler 1995). Cap
ital, too, effects a similar totalization, rendering human relations
as much as the goods they produce comprehensible through
a logic of universal exchange, one that simultaneously and
paradoxically implies both equality (all social transactions can be
made equivalent, for they can be effected by conversion into the
money form) and inequality (one side of the transaction—that of
the capitalist—nevertheless accrues more value than the other).
If software is the mechanism by which specific processes and
media become interchangeable aspects of the universal machine,
then globalization is the process by which individual regions,
peoples, and labor practices are incorporated within a worldwide
system of capitalist political economy. Thus, significant work con
sidering the encounter between a globalizing capitalist tendency
and regional particularity notwithstanding (e.g. Tsing 2005),
analyses of capitalism as a totalizing force remain key to fully
accounting for both its power and drive.

The question thus arises of the relation between the digital and
global or late capitalism, as Marxist thinkers have often termed
it (e.g. Mandel 1978, Jameson 1991). It has been a foundational

59tenet of Marxist epistemology that, contrary to the way I
have described it above, universal exchange has served to
obscure human relations rather than—or, to be more precise,
simultaneously instead of and in addition to—rendering them
into a system of equivalence. Thus, the critique of the commodity
form laid out in the opening of Capital and, hence, the many sub
sequent attempts to lift, provisionally and in advance of a really
existing communist society, the “veil…from the countenance
of the social lifeprocess” (Marx 1976, 173) by way of demys
tificatory analysis and, subsequently, avantgarde Verfremdung,
the latter being the very technique that, as Lev Manovich has
argued, graphical digital interfaces ultimately defang by fully
incorporating (Manovich 2001, 306–307). Yet the rise of graphical
user interfaces (GUI) in the late 1980s and early 1990s, and espe
cially the multimedia software that accompanied them, situates
software at a paradoxical nexus in that the critique it renders
toothless is outlasted by the very form it was meant to critique.
This form is not so much capitalism itself as it is its specifically
commoditized manifestation, which reaches its apotheosis in the
shrink-wrapped software package and, in doing so, also outlasts—
if only just barely—the reallyexisting “communist” societies of
Eastern Europe.

To say that the commodity peaks with the advent of the shrink
wrapped software package is not to say that shrinkwrapped
software somehow represents the ideal, Platonic commodity.
Rather, it is to assert that shrinkwrapped software indicates
the final moments of a political economy fundamentally pred
icated upon the commodity form, that is, one in which nearly all
socioeconomic relations, even those primarily effected through
mediumagnostic “informational” products, are masked through
the circulation of material goods. The view of modern media
as essentially a function of technological reproducibility has
been in play at least since Walter Benjamin’s analysis (Benjamin
1968), if not the advent of movable type itself, but the anti
nomies between a commodity in which a fixed amount of labor

60 is invested and one in which an initial, extensive outlay of labor
is subsequently amortized over large numbers of comparatively
inexpensive copies is stretched to its breaking point in shrink
wrapped multimedia software.1 At the root of these contra
dictions lies the question of whether consumers are purchasing
an object to do with as they please (including copying whatever
content it may contain), or a license to the content contained
within the object, to which they are subsequently subject to
restrictions.2 The question of licensing becomes crucial precisely
at the moment that media are no longer confined to the objects
in which the industrial production process has enshrined them
but become effortlessly reproducible, which is to say subject
to piracy (Kittler 1995). Already the lesson of 1980s campaigns
like the British Phonographic Industry’s (BPI) “Home Taping is
Killing Music,” in the case of digital multimedia socalled intellec
tual commodities become reproducible without so much as the
degradation of quality induced by analog reproduction. Con
sequently, the BPI campaign was followed shortly thereafter by
both a cavalcade of digitallyenabled sampladelia in the popular
music of the late 1980s and a renewed focus on copyright law
within the industry (see, for example, Clover 2009, 25–50).
Shrinkwrapped software represents the apotheosis of the
commodity form because, without the deliberate addition of

1 This problematic is not easily reducible to the classical Marxist distinction
between fixed and variable capital in that components of the culture/media
industry’s creative process, in prenetworked times, were (and still often
are) generally not themselves able to be commoditized as easily (if at all)
as its output was. Thus, “creative” costs (storytellers, directors, musicians,
programmers, etc.) remain to a large extent variable; one cannot (yet?)
purchase a scripting machine at fixed cost and thereby make professional
screenwriters obsolete, although one can now “crowdsource” them.

2 It is of course imperative to consider this question in relation to the music
industry’s own shift to digital media with the compact disc in the early 1980s,
a shift predicated upon convincing consumers to repurchase their favorite
recordings as new media commodities and most decidedly not characterized
in terms of any kind of “media upgrade license” affording those who already
owned them on vinyl or cassette the right to experience them on a new
format. See also Sterne (2012), 219.

61“copy protection,” it is the first commodity that can be exactingly
yet painlessly copied by endusers on a massive scale and thus,
in a sense, the last. This is a problem analyzed by Kittler from
the perspective of what might still barely be called production,
or software development: the impossibility of claiming ownership
of a universally computable algorithm that must be overcome in
order to ground the rise of software as commodity (Kittler 1995).3
On the side of what might equally as tenuously still be described
as consumption, that of the enduser, consider instead in this
regard The Software Publishers Association’s (SPA) infamous
1992 “Don’t Copy That Floppy” video, which tellingly highlights

3 For Kittler, software compilation enables universally computable algorithms
to become obscured and thus property, a process which he productively
but erroneously equates with mathematical encryption: “The evergrowing
hierarchy of highlevel programming languages works exactly the same
way as oneway functions in recent mathematical cryptography…For
software, this cryptographic effect offers a convenient way to bypass
the fact that by virtue of Turing’s proof the concept of mental property
as applied to algorithms has become meaningless…Every license, every
dongle, every trademark…prove[s] the functionality of oneway functions”
(Kittler 1995). In actuality, the distinction between the two is key: decoding
a message encrypted with a sufficiently advanced “oneway” algorithm,
while so computationally intensive as to remain infeasible without the
key with which it has been encrypted, nevertheless produces an exact
replica of the encoded message when performed successfully; there is no
such guarantee with decompilation. Although crucial for the reification of
software into a commodity, compilation might be more accurately anal
ogized to a kind of lossy compression. To put it another way, decompilation
is properly undecidable, with only a partial reconstruction existing in the
complexity class NPcomplete (Horspool and Marovac 1980, 223, 227), while
by contrast full decryption of a “oneway” ciphertext without the key is,
at best, as Kittler describes, NPcomplete. (What Claude Shannon defines
as a “Perfect Secrecy” system, however, would be properly undecidable
because the number of possible decryptions would equal the number of
possible plaintext messages (Shannon 1949, 659). Such a system carries
the difficult requirement of a truly random key, preshared between the
sender and receiver, of equal or greater informational value (e.g., length)
to the message to be encrypted; contemporary digital encryption systems
generally trade this undecidable perfection for smaller amounts of entropy
(i.e., manageable key length), reusability, and the possibility of public, yet
reasonably secure, key exchange).

62 the issue of software piracy through a musical form then at the
height of its popularity, hiphop.

The video begins with two schoolchildren debating whether
to copy a game in order to take it home and continue playing
when “DP,“ a rapping “disk protector,“ appears on their computer
screen to discourage them. Citing the economic costs of copying
software, DP, played by actor and lawyer M.E. Hart, explicitly con
nects the software industry to the retail store:

One leads to another then ten then more
and no one buys any disks from the store
so no one gets paid and they can’t make more
the posse breaks up and that closes the stores.
(SPA/M.E. Hart 1992)

Indeed, the video seems to suggest that software is inseparable
from the physical medium in which it is inscribed:

The more you take the less there will be
the disks become fewer, the games fall away
the screen starts to shrink and then it will fade
programs fall through a black hole in space
the computer world becomes bleak and stark
loses its life and the screen goes dark.

Welcome to the end of the computer age.
(SPA/M.E. Hart 1992)

The “computer age” here is unthinkable not simply without a
material support (an observation unremarkable to the point of
obviousness) but without a very specific material support, the
floppy disk, and the system of economic relations—again not
simply capitalism but a specific system of commodity distribution
and retail sales—that enables it. Yet the video itself not only
seems aware of the uphill battle it faces in convincing computer
savvy kids not to pirate software (at one point it even seemingly
admits that it is often trivial to do so), it relies on the very features
of iterability whose deployment it seeks to curtail in its audience.

63Hiphop, of course, as Joshua Clover has noted, is perhaps the
popular musical genre most closely associated with sampling and
appropriation (Clover 2011, especially 89–90; see also Clover 2009,
25–50), and the video’s musical backing track is accompanied
by stock graphics that are cycled through by applying various
changing color palettes in a veritable tour de force of the era’s
multimedia production standards. Indeed, one wonders to what
extent the video and its soundtrack are composed out of fully
licensed (or licensefree) sources, or rather if its makers might
instead perhaps claim fair use for at least some of the sam
pled drums and/or visual motifs it incorporates. Regardless, the
video’s existence is ultimately inseparable from the techniques of
reproduction it decries, as digital logics of reproducibility are the
cultural legacy to which producers and consumers alike are heir
in the age of multimedia, which is perhaps why the focus here is
less on the legal ramifications of piracy than its supposed eco
nomic and, ultimately, moral consequences.

To say that the commodity peaks with the advent of the shrink
wrapped software package is also to say that from there it goes
into decline. Software, and software “publishing” specifically,
does begin to disappear as the SPA predicted, but not as it
feared. Screens do, in fact, begin to shrink and even fade as
mobile devices and the embedded components that will make
up the Internet of Things come to be the dominant computing
platforms of the early 21st century, and programs themselves do
seem to fall through a black hole as the commoditized software
package is increasingly replaced with the Software as a Service
(SaaS) paradigm. SaaS is generally conceived as a backend
phenomenon, powering platforms like Amazon Web Services
and Microsoft Azure, on which other companies’ software
applications can run without the need for them to maintain a
physical server infrastructure. Even more so, the term is used to
describe a paradigm for constructing madetoorder applications,
business processes, or workflows out of individual, constit
uent parts as, for example, with the widely popular Salesforce.

64 com, whose phone number is in fact listed on their website
as 1800NOSOFTWARE. Yet, today, with the retail software
store practically nonexistent and the floppy itself a media
archeological relic, it is worth considering the ways in which the
service paradigm has subsumed even shrinkwrapped enduser
software.

In January 2015, for example, following its success in rebranding
Office, arguably its most valuable software product, as a sub
scription service with Office 365, Microsoft announced that its
forthcoming operating system, Windows 10, would be available
under similar terms:

We think of Windows as a Service – in fact, one could
reasonably think of Windows in the next couple of years as
one of the largest Internet services on the planet. (Meyerson
2015)

One could view this move in terms of the software giant playing
catchup to Apple, which has offered upgrades to its iOS mobile
operating system free to those with a valid mobile carrier con
tract since the release of the original iPhone in 2007 and free
upgrades to its desktop OS X operating system since 2013. Unlike
the latter company, however, which could be said to take a
more Kittlerian approach, subsidizing its OS development costs
through the sale of hardware, Microsoft, which licenses Windows
to thirdparty hardware manufacturers and thus relies directly on
software sales for revenue, explicitly evokes the service paradigm
as a justification for this transition. Where once new operating
systems, most notably Windows 95, were met with customers
queuing up to be the first to walk out the door with a boxed
copy, the Windows as a Service paradigm suggests that even the
software most fundamental to the operation of our personal
computers is now considered something akin to infrastructure,
maintained under contract rather than delivered as standalone
product.

65Free and Open Source software (F/OSS) has often been
championed as a response to the shrinkwrapped commodity
model, but the interventions that made it a powerful alternative
to proprietary software have thus far proven largely inef
fective in addressing the specific inequalities perpetuated by
the expansion of capital via SaaS. Many of the requirements
of the venerable GPL (GNU General Public License), such as the
requirement to publicly offer source code (including any mod
ifications made), do not apply to those running such software
on a server that only presents the output of its computations to
the enduser via the network, leaving these stipulations to the
compatible, but less popular AGPL (GNU Affero General Public
License, see GNU Operating System 2015). Exceptions like this
allow “cloud” companies, including major tech players like Google
and Apple, to take advantage of free software while maintaining
the proprietary nature of their online services. Indeed, legal
measures like the AGPL can only partially ameliorate this situ
ation. GNU founder Richard Stallman describes the conundrum in
terms of Service as a Software Substitute (SaaSS):

[I]f the programs on the server are free that doesn’t protect
the server’s users from the effects of SaaSS…SaaSS always
subjects you to the power of the server operator, and the
only remedy is, Don’t use SaaSS! (Stallman 2010, emphases in
original)

The service paradigm can thus be seen as supplanting not only
commodity, but free software ideology as well.

Perhaps even more strikingly, Adobe Systems’ 2013 move to
a “Creative Cloud” infrastructure for its suite of multimedia
software including Photoshop, Flash, and Illustrator replaces
the shrink wrap model with a subscription service for the very
group of “creative professionals” whose jobs, at least until the
financial crisis of 2008, were seemingly one of the few bright
spots in an otherwise bleak global economy. If, as Lori Emerson
has argued, Apple has made of “creativity” something of a

66 fetish, obscuring the very lack of creativity it fosters upon users
through its increasingly closed software and hardware inter
faces (Emerson 2014, 1819), the Creative Cloud paradigm and
its corresponding mobile apps suggest that even that limited
amount of imagination is now only available on loan from major
multinational corporations. Viewed in comparison with the
origins of Photoshop, one of the Creative Cloud’s (and, indeed,
Adobe’s) flagship products, the “Creativity as a Service” paradigm
tracks the ongoing reduction of the socalled “creative class”
(Florida 2002) to bonded laborers. Developed in the late 1980s
and debuting as a 1.0 product in 1990, where it quickly became
a cornerstone of the digital multimedia revolution, Photoshop
is arguably the software product most responsible for the
ascendance of this class in the first place: on a website recently
constructed to celebrate the program’s 25th anniversary,
Hungarian artist and photographer Flora Borsi writes,

When I was a young girl, I didn’t have the money to organize
shoots in a studio, so I created whatever I wanted in Photo
shop. Thank you, Adobe, for giving me the tools and oppor
tunity to build my career. (Adobe 2015)

Yet, in a Reddit Ask Me Anything with Photoshop cocreator
Thomas Knoll scheduled as part of this celebration, one
particular thread (amongst a handful of other mentions of the
topic) remarked upon how crucial the role of piracy had been in
developing children, who usually could not afford the famously
expensive software, into paying adult professional users. User
mkautzm writes,

It ’s very indirect and it’s definitely playing the long game,
but if you can get teenagers invested in your product before
it ’s actually time to make a purchasing decision either for a
business or for personal use, I think that’s extremely sus
tainable and profitable for a business…This is hugely at odds
with the Adobe Cloud. (Reddit 2015)

67As a method of shifting away from a commodity model that also
carries with it the added benefit of being more closely able to
contain piracy, SaaS, especially when extended into enduser
software like Windows and Photoshop, offers an example of
Thomas Piketty’s muchcelebrated analysis describing how a
rentier economy flourishes when r, the rate of capital return,
exceeds g, the rate of economic growth (Piketty 2014, 25–27 and
422–424), shifted into the “immaterial,” digital realm. Correlative
with a decline in career development and upward mobility,
commercial software providers, rather than relying upon those
who pirate a shrinkwrapped copy to develop into legitimate
owners of subsequent major versions when they become
financially and professionally solvent, now prefer to lease them
as “services” to all users on a monthly or yearly basis in exchange
for precarious, everrevocable access to a steady stream of
incremental updates.

Services in fact occupy something of a contradictory place in
Piketty’s analysis in that they simultaneously account, at least in
Western economies, for the largest sector of economic growth
over the past 200 years—one primarily based upon raw human
labor such that “an hour’s work of the typical wageearner in the
twentyfirst century can buy just as many haircuts as an hour’s
work a hundred years ago” (Piketty 2014, 90)—yet, at the same
time, one that contains “the lowest paid workers” (Piketty 2014,
280). In fact, he argues that services have become so dominant
and such a catchall term that

[i]t would probably be more perspicuous to group activities
in terms of their ultimate purpose (health, transport,
housing, etc.) and give up on the distinction agriculture/
industry/services. (Piketty 2014, 589, n. 17)

In much the same way that nearly all media are now digital,
nearly everything is now a service, so the need to specifically
identify them as such is superfluous; this is an expansion of auto
nomist Marxists Michael Hardt and Antonio Negri’s assertion

68 that what they call “immaterial labor has become hegemonic
in qualitative terms” (Hardt and Negri 2004, 109, emphasis in
original). The service sector, for them, is a subset of immaterial
labor, which also includes logical and semantic practices such
as programming, but in a SaaS economy, these distinctions are
rapidly vanishing. With mobile applications like Uber, Airbnb,
and TaskRabbit connecting contractuallyindependent drivers,
parttime landlords (or sublessors), and contingent workers with
paying customers, software becomes the means for the sup
posed “disintermediation” of buyers from sellers in an immaterial
labor market more accurately defined in terms of service than
“sharing.”4 With companies like ElanceoDesk and OnForce, this
regime is extended to developers as the “Everything as a Service”
model incorporates even the creation of software services
themselves (DCR TrendLine 2014).

If the autonomist hope was that the qualitative hegemony of
immaterial labor offered a turn away from the mystification of
the commodity form and towards Marx’s “social lifeprocess”
not through the disenchantments of the avantgarde but via
the expanding multitude that capital attempts to subject to this
potentially more selfevident regime of labor, then the (return
of the) service economy in software, as the qualitative and
quantitative expansion of an alreadyexisting contingent labor
force, represents capital’s fullthroated response to these con
ditions.5 Services do make more apparent the social networks

4 On apps like Uber and Airbnb the provider is rated as much if not more
than the amenities “shared.” An Uber driver is not so much “sharing” her or
his car as they are chauffeuring someone somewhere; in order to ensure a
favorable rating on the site, an Airbnb “host” often, if not always, provides
a variety of services (cleaning, cooking, potentially even companionship)
above and beyond the strict “sharing” of lodging with his or her “guests.”

5 It is important to note that the mainframe era of computing offered its own
version of SaaS with companies like IBM complementing the sale or rental
of their massive and costly hardware with development consulting services.
The current SaaS model is thus in a sense both a return to and an expansion
of this concept whereby it is extended from the enterprise to the population
at large. For more on the multitude, see Hardt and Negri (2004).

69that constitute labor relations, but they do so while taking an
invisible, yet hefty cut. Indeed, this is Piketty’s point when he
highlights the absurdity inherent in the president of the European
Central Bank’s campaign against “rents”:

What the central banker had in mind, apparently, was lack of
competition in the service sector: taxi drivers, hairdressers,
and the like were presumably making too much money. The
problem posed by this use of the word ‘rent’ is very simple:
the fact that capital yields income, which in accordance with
the original meaning of the word we refer to…as ‘annual rent
produced by capital,’ has absolutely nothing to do with the
problem of imperfect competition or monopoly. (Piketty
2014, 423)

Capital, in other words, extracts rent regardless of the licensed
professions it seeks to disrupt in the name of “efficiency,” and
softwareenabled service economy companies like the taxisup
planting Uber are nothing more than the way it does so at their
expense. Thus, if it seems that, in a sense, there is no (longer any)
software, it is not through its reduction to the pure potential of
the universal machine, but by way of its hypostatization into the
agent of universal economic exchange, the ultimate mediator of
social relations and the ultimate aim of globalization. Similarly,
when everything becomes a service, humanity can no longer be
considered to be approaching a common existence as unalien
ated beings marshaling the free potentia of our collective labor;
rather, everyone becomes a serf. Just as information security
analyst Graham Cluley has suggested, echoing Stallman, that we
ought to replace the word “cloud” with the phrase “somebody
else’s computer” (Palmer 2013), when we hear the word “service”
we should instead think “somebody else’s property,” a deniable
reality as long as we still had a chance of convincing ourselves
that it was we who had ownership over the contents of a box,
rather than the other way ’round.

70 Bibliography

Adobe. 2015. “25 Years of Photoshop.” Adobe Systems, Inc. Accessed February, 22
2015. http://www.adobe.com/products/photoshop/25yearanniversary.html.

Benjamin, Walter. 1968. “The Work of Art in the Age of Mechanical Reproduction”
(1936). In Walter Benjamin, Illuminations, edited by Hannah Arendt. Translated by
Harry Zohn, 217–251. New York, NY: Schocken.

Clover, Joshua. 2009. 1989: Bob Dylan Didn’t Have This to Sing About. Berkeley, CA: Uni
versity of California Press.

Clover, Joshua. 2011. “Ambiguity and Theft.” In Cutting Across Media: Appropriation
Art, Interventionist College, and Copyright Law, edited by Kembrew McLeod and
Rudolf Kuenzli, 84–93. Durham, NC: Duke University Press.

DCR TrendLine. 2014. “EverythingasaService.” Accessed April, 6 2015. http://
trendline.dcrworkforce.com/everythingasaservice.html.

Emerson, Lori. 2014. Reading Writing Interfaces: From the Digital to the Bookbound.
Minneapolis, MN: University of Minnesota Press.

Florida, Richard. 2002. The Rise of the Creative Class: And How It's Transforming Work,
Leisure, Community and Everyday Life. New York, NY: Basic Books.

Galloway, Alexander R., and Eugene Thacker. 2007. The Exploit: A Theory of Networks.
Minneapolis, MN: University of Minnesota Press.

GNU Operating System. “Why the Affero GPL.” Accessed April, 5 2015. https://www.
gnu.org/licenses/whyafferogpl.html.

Hardt, Michael and Antonio Negri. 2004. Multitude: War and Democracy in the Age of
Empire. London: Penguin.

Horspool, R. Nigel, and N. Marovac. 1980. “An Approach to the Problem of Detrans
lation of Computer Programs.” The Computer Journal 23 (3): 223–229.

Jameson, Fredric. 1991. Postmodernism, or, The Cultural Logic of Late Capitalism.
Durham, NC: Duke University Press.

Kittler, Friedrich. 1995. "There is no Software." CTHEORY. Accessed 21 February 2015.
http://www.ctheory.net/articles.aspx?id=74.

Mandel, Ernest. 1978. Late Capitalism (1972). Translated by Joris De Bres. London:
Verso.

Manovich, Lev. 2001. The Language of New Media, Cambridge, MA: MIT Press.
Marx, Karl. 1976. Capital: A Critique of Political Economy, Volume One (1867). Translated

by Ben Fowkes. London: Penguin.
Meyerson, Terry. 2015. “The next generation of Windows: Windows 10.”

Blogging Windows. Accessed February, 22 2015. http://blogs.windows.com/
bloggingwindows/2015/01/21/thenextgenerationofwindowswindows10/.

Palmer, Danny. 2013. “We should replace the word ‘cloud’ with ‘somebody else’s
computer’, says security expert.” Computing. Accessed February, 25 2015. http://
www.computing.co.uk/ctg/news/2316368/weshouldreplacethewordcloud
withsomebodyelsescomputersayssecurityexpert.

Piketty, Thomas. 2014. Capital in the 21st Century (2013). Translated by Arthur
Goldhammer. Cambridge, MA: The Belknap Press of Harvard University Press.

71Reddit. 2015. “Hi everyone, I’m Thomas Knoll and 25 years ago this
week I cofounded Photoshop with my brother John. AMA.” Accessed
February, 22 2015. http://www.reddit.com/r/IAmA/comments/2wh6fx/
hi_everyone_im_thomas_knoll_and_25_years_ago_this.

Shannon, Claude. 1949. “Communication Theory of Secrecy Systems.” The Bell
System Technical Journal 28 (4): 656–715.

The Software Publishers Association. 1992. “Don’t Copy That Floppy.” Directed by M.
J. Vilardi. Lyrics by M. E. Hart.

Stallman, Richard. 2010. “Who does that server really serve?” Boston Review, March
18. Accessed May 28, 2015. Repr. GNU Operating System. Accessed April, 5 2015.
https://www.gnu.org/philosophy/whodoesthatserverreallyserve.html.

Sterne, Jonathan. 2012. MP3: The Meaning of a Format. Durham, NC: Duke University
Press.

Tsing, Anna Lowenhaupt. 2005. Friction: An Ethnography of Global Connection.
Princeton, NJ: Princeton University Press.

 DATABASE

 BLACK BOX POLITICS

 LOGISTICS

 ORGANIZATIONAL CULTURES

 LABOR

Service Orientations:
Data, Institutions, Labor

Liam Magee and Ned Rossiter

Our central interest in this essay is to consider the
role of the database as a technology of governance
and the scramble of power as it relates to a capacity
to	model	the	world	and	exert	influence	upon	it.	
We argue Software as a Service is more than a new
vogue term of the IT industry, constituting a longer
temporal horizon and more complex rearrangement
of relations between data and labor to which the
database and its entailments remain critical.

Arguably the relational database has had greater impact on the
transformation of organizational cultures and the world economy
than the Internet. The analytic potential of computational
databases coupled with the materiality of data centers has
produced models of this world without historical precedent. Key
here is the question of scale and the ubiquity of data capture. The
structuring of data has a genealogy. The knowledge once derived
from the transitional technologies of cabinets of curiosities
(Wunderkammer), demographic registries and Foucault’s “great
tables” in the 17th and 18th centuries—later systematized
into various epistemic instruments that included Diderot’s
encyclopaedia, the periodic table, the museum and Linnaeus’
taxonomies—were all coincident with the rise of populations
governed as statistical subjects. The Cartesian grid, a two
dimensional space for organization and arrangement, provided
an abstract template for subsequent techniques to employ in the
structuring and querying of data. Such instruments can today
be understood as protodatabases, foreshadowing what Gernot
Böhme has called our present era of “invasive technification“
(Böhme 2012).

Critique and judgement become hoodwinked by the seemingly
irrefutable authority of statistics and visualizations of the incom
prehensible. Decisions are made on the basis of a misrecognition
between data and the material world. Cognition is now out
sourced to the machine. Leibniz’s dream of a mathesis universalis
becomes in this incarnation a nightmarish inversion—from being
at the center of the modern epistemological enterprise, humans
are now peripheral data collectors and, increasingly, just data.
Structurally oblivious to their function in the reproduction of
value within an economy of data, the human has entered a new
period of machinic arrangement whose operation is abstracted
into the realm of semiotic capitalism (Lazzarato 2014). An
imaginary of cooperation, sharing and participation provides a
powerful narrative for the entrepreneurialself whose capacity to
organize collective forms of refusal is consistently undermined by

75the disaggregating effects of value extraction derived from the
computational logic of recombination hidden within the vaults of
algorithmic architectures (Scholz 2014; Terranova 2014).

The advent of the relational database in the early seventies marks
a critical transition in the ductility and malleability of knowledge
of people and populations. Edgar Codd, an IBM employee, first
introduced the relational model as an alternative to existing net
work and hierarchical database systems. The relational database
differs by formalizing the relationships between the logical
elements contained in distinct sets; one of its advantageous
effects was to separate the operations of manipulating and
querying data from its physical location on hard drives (Codd
1970). The cost and time involved in changing how programs work
with data is accordingly reduced. The interrogation of subjects
soon after becomes literalised with the advent of the Structured
English Query Language, or SEQUEL (and later SQL), in a paper
by Chamberlin and Boyce, also IBM employees, in 1974. Already
the human subject is captured in specific “relations” of labor and
commodities. Chamberlain and Boyce's very first example con
sists of a “relation describing employees,” featuring the barely
fictional cast of familiar surnames: “Jones,” “Smith” and “Lee”
(1974, 250). A further example of query references equally familiar
brands: “Find those items which are supplied by Levi and sold
in the men’s department” (253). These examples also betray the
spatial and cultural centers of the fledgling IT industry.

With the advent of the relational model and SQL, information
becomes in a new sense purely programmable as data and
available for, among other things, forms of ad hoc knowledge
production. It opens up entirely new scientific fields of infor
matics. Data mining, business intelligence, realtime analytics,
customer relationship management (CRM) and enterprise
resource planning (ERP) are unthinkable without the modern
database. This in turn has led to a technological shift in the
processing and logistical operations of modern institutions,
with transformative effects in the apparently mundane fields of

76 report writing, insurance assessment, credit checks and policy
development. What were once specialized arts become template
driven and eminently replicable institutional processes.

Here, knowledge rubs up against the politics of parameters. New
uses of data became a constant in the social life of institutional
settings, laden with a politics that remains for the most part
implicit as it is pervasive. As Codd noted presciently, though
without apparent concern for its political implications, “future
users of large data banks must be protected from having to
know how the data is organized in the machine” (Codd 1970, 377).
Implied here is a system operating in “protected mode,” a form of
prophylactic for organizers of the data as well as for those “future
users” at risk of going crazy (Kittler 2013). As Friedrich Kittler
observes, the power of the protected mode is “derived … from the
efficacy of silence” (Kittler 2013, 213). Unable to intervene in the
operating system (OS) of the machine, the user is locked out from
issuing commands that alter the architecture and addressable
memory special to the real mode of Intel’s x86 central processing
unit (CPU) introduced in 1978. Intel’s 80286 16bit microprocessor,
released in 1982, distinguished between real mode and protected
mode, a CPU designed for multitasking applications operating
in realtime secured by increased operating system control.1

Modern operating systems, Windows, MacOS and Linux, continue
to use this mode to protect us from our machines, in some sense,
even today.

The widespread adoption of protected mode systems impacts
upon the economy of expression, practice, subjectivity and
knowledge. In one of his rare moments of invoking a concept
of power, Kittler suggests that the Foucauldian analysis be
reoriented around an investigation of how protected modes

1 Kittler’s object of critique is the 80386 32bit microprocessor released in
1985, which improved upon the protected mode of the 80286 by allowing
modeswitching. The 80386 also had greater market penetration and was
widely adopted across a range of institutional settings.

77specific to technological systems and their “privileges” provide
the key to reconstructing the transformation of bureaucracies.
While not renowned for political statements, Kittler considers the
issue of access rights as, in effect, the new front of a geopolitical
war against the hegemony of the United States and the imperial
extension of its IT industry across global economy and society.

One might reasonably assert that Open Source software (OSS)
offers such an alternative to protected mode. But for the most
part, OSS mimics if not aspires to the aesthetic regime of the
hugely dominant operating systems. Doityourself (DIY) hard
ware assembly might offer a more deviant alternative, though
even moreso than OSS it is unable to scale up to pose any real
challenge to the IT behemoths. The DIY hardware movement
is increasingly tied to maker culture, which as the longtail
of “artisanalternatives” is not prepared to admit how the
valorization of localism frequently depends on global supply
chains (Wark 2013). Virtuous acts of rarefied consumption
coupled with the satisfaction of selfassembly fulfill a hipster
imaginary of distinction, an innercity latte variation on IKEA.
Just as the imaginary itself is part of a global media production,
reverberating from one trendy alleyway to another, its desires are
serviced through the concealed operations of the world logistical
economy.

The OSS and maker cultures encompass a spectrum from “com
plicit” corporatebacked organizations (for example, the Apache
Software Foundation) through to iconoclasts and hacktivists who
offer some scope for critical kickback. While the OSS movement
in general shares an obvious alignment with the call by Kittler
(and many others) for forms of open access, or real mode, this
does not disqualify the scepticism we register here. Even the
most idealistic of projects can become entangled in corporatism.
MySQL is a widely used database system, a “poster child” of the
OSS movement and the default for many other OSS projects,
including the popular blogging engine WordPress. In 2008 the
Swedish firm that hosted and supported MySQL was sold to Sun

78 Microsystems, which in turn was soon after acquired by Oracle,
the largest vendor of enterprise database systems in the world.
It continues to be supported by Oracle as a means of “upselling”
users to its more expensive suite of products. In protest, one of
the founders of MySQL then launched a Save MySQL campaign
(Wikipedia contributors 2015).

The durability of knowledge practices was and continues to
be coextensive with the persistence of parameters. Political
existence contracts into the embodiment of Quine’s dictum: to be
is to be the value of a variable. Manuel DeLanda has, in another
context, reflected explicitly upon the conceptual individuation of
the assemblage through a process of parametrizing, or “providing
it with ‘knobs’ with modifiable settings the values of which
determine the condition of the identity of an emergent whole
at any given time” (DeLanda 2011, 187). Just as contemporary
philosophy is tempted, then, to think entire ontologies, including
social systems, through the affordances of database logics, the
operations of modern institutional life and labor are equally
determined by processes of parametric adjustment, tuning and
tweaking. Changing these values—the settings of parameters—
alters the configuration of thought and practice.

By the early 1980s the increasing reliance of all institutions on
the parametric affordances of the database reinforces and
reinflects late twentieth century theories of institutionalism.
For Max Weber, operating under earlier assumptions about the
institution, it appeared as a necessarily constrained artefact of
capitalist modernity, a comparatively inflexible and noncon
figurable organizational form without parameters (Weber 1930).
In announcing “new institutionalism,” Paul DiMaggio and Walter
Powell revisited this “iron cage of bureaucracy,” reconceiving the
modern institutional form as instead an “isomorphic” entity with
shared common procedures, structures and operational norms
which at the same time could be capable of adaptation to geo
graphic, commercial and industryspecific conditions (DiMaggio
and Powell 1983). We argue this isomorphism or “elective affinity”

79between organizational forms and technomaterialist conditions
at particular conjunctures is recognizable by new institutionalist
theorists in part due to its historical coincidence with the ubiquity
and relatively enduring quality of the enterprise database. In the
same way, the onset of flexible modes of capital accumulation
was not a transformation independent of emergent devel
opments in computational architectures. The logistical world
of what Anna Tsing (2009) terms “supply chain capitalism” has
become increasingly governed largely by the dual and intercon
nected processes of realtime computationality and justintime
modes of production and distribution. The agility of the modern
institution is, then, contingent upon the combinatory possibilities
of relational databases that operate at ever increasing scales.

Since the 2000s the capacity for institutions to adapt to regimes
of flexibilization is augmented, rather than replaced, by novel
nonrelational systems. Socalled NoSQL, or non-relational
databases, appear to relax the constraints imposed by the
relational model. Seemingly new paradigms of data man
agement add further layers of what Codd had termed “protective”
indirection between users and the physical allocation of zeroes
and ones on magnetic or solid state hard drives. Two particular
IT terms resonate here: SaaS, or Software as a Service, and SOA,
or Service-oriented Architecture. The first term, SaaS, refers to the
delivery of software as a series of features, or services, over a
network rather than as an executable file that installs and runs
from a computer’s hard disk. The second, SOA, describes instead
a way of developing software to expose critical functions, again
as services, over a network for use by other software. Databases
do not disappear in these frameworks. Rather, they are trans
formed into services provided to other systems, other services
and part of a larger combinatory puzzle through which clients,
both machinic and human, have their informatic demands met.
In theory, organizations providing such computational services
are interchangeable. In practice, IT language such as standards
compliance, consumer choice and the ability to plugandplay

80 different services and vendors become tokens in a game of
entrenchment that pays lip service to flexibility. Choice is seen
through the prism of constrained parameters. This logic refracts
the insular world of IT fashions and policies to the larger fields
of institutional labor and politics, increasingly dependent upon
these apparent abstractions of informational architectures.

Part of the flexibility of what Stefano Harney and Fred Moten
term the “algorithmic institution” tasked with the management
of “logistical populations” is immanent to the technical operation
of enterprise databases such as Oracle and IBM, which are prone
to bugs, hardware malfunctions, software glitches and the like
(Harney and Moten 2013, 90–91; Harney 2014). Yet the logistical
fantasy of a smooth world of seamless interoperability is not
disturbed by technical malfunctions alone. As Harney and Moten
write:

Every attempt by logistics to dispel strategy, to banish
human time, to connect without going through the subject,
to subject without handling things, resists something that
is already resisting it, namely the resistance that founds
modern logistics. (Harney and Moten 2013, 91–92)

Logistics is always troubled by that which it cannot obtain, by the
indeterminate temporal and spatial horizons and hidden reserves
of human subjectivity that forever entice the technocratic
tendency with the promise enhanced measures of efficiency,
yet which by definition remain beyond the calibrating optic of
logistics. This is why so much cognitive attention and so many
financial resources are expended upon designing more complex
computational infrastructures.

“The Service Orientation”

In the first decades of the relational database, it was possible
to imagine this tool of bureaucratic enlargement through the
metaphor of the physical container. Sitting in airconditioned

81windowless rooms, database servers retained a tenuous but
palpable link between the logical and the physical. Databases
ran on big iron mainframes or industrialstrength PCs capable
of fast input/output operations, low disk and network latency,
and high transactional throughput and parallelism. Data had a
home; it could be secured, locked down, contained within the
appropriately named data center. Deeply nested behind non
descript suburban office exteriors and warehouses, technicians
and administrators, with talents that were obscure even to
the broader IT industry, kept the machines and data systems
humming. Yet the prospect of fully automated labor was never far
from the machine dreams surrounding the database. Robots took
over the swapping of backup tapes; selfreplicating and load
balancing databases reduced the need for human monitoring.

This is not so much a story of manufacturing and lowwage
jobs offshored to developing economies; such features can also
be found in the majority of advanced economies. Rather, the
integration of multiple layers of valuegenerating activities is
made coincident as a result of technologies of governance such
as the relational database. Labor becomes increasingly sub
ject to the logistical regime of realtime coordination, command
and control. In an inversion of the processes of software and
database design techniques used to simulate “real world” objects
such as the “customer” or the “employee,” pace Chamberlin and
Boyce (1974), these labor entities begin to resemble more and
more the data structures of enterprise resource planning and
human resource (HR) systems they are supposedly modeled upon
(Rossiter 2015).

Beginning in the nineties, but maturing with the arrival in the
mid2000s of fullyfledged virtualized or cloud services such
as Amazon Web Services and EC2 (Elastic Compute Cloud),
Microsoft’s Azure platform and Google’s App Engine, SOAs pose
a radically alternative computing paradigm. At the same time this
paradigm looks to extends Codd’s desire to “protect” users still
further. Housed on highly virtualized farms of servers in data

82 centers, databases could now reside everywhere—and nowhere.
What matters under this paradigm is no longer the specific con
figuration of technical data structures to physical hard drives and
machines, but rather the relations, tuples, lists, sets, sequences,
keys and tables peculiar to the processing of data. Indeed, the
modern database administrator, including the humble maintainer
of WordPress websites, is less and less likely to understand how
these relations are configured at all. Rather, the database exists,
increasingly, as a kind of implied contract to supply its clients with
a range of data services, delivered over networks using various
standardized protocols that include SOAP (Simple Object Access
Protocol) or REST (Representational State Transfer).

The database is no longer a container, a tangible housing or
repository. Instead, it is service oriented: the passive object of a
sentence, that which is responsive to requests. From the point
of view of the demanding client, it is no longer relevant whether
these service requests are resolved by a tightly coordinated
cluster of processes running on the same processor, or instead,
and increasingly, by a loosely federated web of interconnected
services. In effect, this means the architecture is never ques
tioned. Any plea for change or deeper level access is met with
resounding indifference by the proprietors of control. The
function of the client is to submit to service. Such a technique of
capture provides the basis for scalar expansion. One may choose
to migrate to other providers, but the time and cost associated
with adapting organizational processes and activities to slightly
reconfigured architectures is significant. So no matter how
much a client may wish to flee serviceoriented systems, the
operational indebtedness to a particular architecture more often
exceeds the will to escape. In spite of the rhetoric of standards
compliance and migration pathways, in practice user “protection”
risks becoming pacification.

The devolution of computing to the shapelessness of the cloud
is one of the IT industry’s recurring motifs. Even if it is not
inevitable, there is nonetheless a danger in exaggerating the

83convergence between networks, storage and computational
processes. Already by 1984 it was plausible to market the idea
that “the network is the computer” (Olsen 2008; Aytes 2012). Sim
ilarly, in 2015, it is also possible to argue that the compelling story
of reified services, both in the purely computational sense of SOA
and in the economic derivation of SaaS and its nearcognates,
Infrastructure as a Service (IaaS) and Platform as a Service (PaaS),
has long since subsided into the background noise of general IT
hardware and software commoditization. These technologies
have reached their point of design stasis, what in Gartner’s jargon
would be termed the “plateau of productivity.”

Yet the terminology of computing services suggests a more
meaningful turn, a reorientation is underway. Through the prism
of the new computing service industries—which include not only
the outsourcing of hardware, software and network capacity,
but also quasihuman services such as system monitoring and
backup, fault detection and data analytics—it is possible to
imagine a highly compressed history of capitalism replayed at
a rapidly accelerated velocity. It is as though computing, having
earlier exorcised its primary and secondary industry moments, is
today running headlong into its postindustrial epoch—an event
heralded for capitalism at large only in the 1970s. Aping the age
of corporatism, of endless outsourcing, offshoring, vertical and
horizontal integration, mergers, acquisitions and divestments of
noncore assets, the rise of the global SOA effaces as meaning
less the authority of the singular, coherent software system or
repository of data. The tangible data product—a hard drive, a
floppy disk, a memory stick—is now fully transformed into an
etherealized thing, an intangible commodity, an abstract service,
often performed either algorithmically or supported via data
entry by nimble fingers or server maintenance from bodies in
spaces remote to the sites of consumption.

The newly formed fabric of SaaS represents, then, the realization
of a particular logic of procedural alienation—a realization in
which both the computational time of processing cycles and

84 human programmatic labor of developing services lose their dis
tinctiveness. In this model, “Software as a Product” disappears.
So too does the appealing cottage industry of eighties share
ware culture, swap meets, and the thenfledgling Open Source
movement, where at least the programmer’s authorship and rep
utation could be tied—however superficially, and now, with some
sense of nostalgia—to an identifiable artefact or commodity. In
its place comes a grey world of interconnected service endpoints,
undifferentiated, integrated and distinguished only by IP
addresses and a coded declaration of their capabilities.

This architectural model has its political analogue in the rise of
microwork, exemplified by another Amazon site: the Mechanical
Turk (MT). 2 Here, for the remaining lowvalue services algorithms
cannot quite yet accommodate, and which need therefore to
be especially qualified as Human Intelligence Tasks (or HITs),
it is possible to buy and sell human labor at piecemeal rates.
The original eighteenth century Turk represented a machine
that dissembled the rules specific to its operation, all the while
being driven by human labor. The Amazon “refresh” suggests
a new possibility: human labor now fills in the gaps for those
cases where algorithms are insufficient. Tasks include identifying
duplicate Facebook and Google+ accounts, labelling materials of
objects in photographs and deciphering handwriting (Limer 2014).
This form of service orientation is, today, a fortunately esoteric
form of soliciting labor. Yet the close approximation in language
and function between Amazon’s EC2 and Mechanical Turk—both
promote the flexibility of “elastic” resources—offers a glimpse
of a degree of “invasive technification” that exceeds the gloomy
predictions of Böhme. The algorithmic possibilities of the service
oriented institution are similarly elastic: they continue to stretch
and expand across a range of human occupations, a process of

2 A number of participants also addressed MT at the Conference Digital Labor:
Sweatshops, Picket Lines, Barricades, The New School, 2014.

85labor automation decried since the seventeenth century (see
Hobsbawm 1952).

Moving into the twentyfirst century, it is not so much the
threat of obsolescence as the disappearance of boundaries and
responsibilities that, paradoxically, is presaged by the rise of the
SOAled institutions. It becomes increasingly difficult to see in
the current orientation towards services how from the point of
view of the service consumer certain forms of monotonous and
metricladen human labor can be differentiated any longer from
those performed by computers. The work of Business Process
Outsourcing (BPO) has become a staple economy across much
of the IT sector in India. Servicing the needs of data entry in the
medical, insurance, logistical and finance sectors for both large
multinational companies and Small and Medium Enterprises
(SMEs), BPO work is secure as long as wages remain suppressed.
Like the circuit board that never tires, BPO work and its affective
correlate found in call centers is 24/7 both offer a form of
“sensory impoverishment” that dulls perception and dissipates
any reserves of energy that might be harnessed into forms of
labor organizing (Crary 2013, 33, 105).

The Ethereal Database, or, Black Box Politics

If the relational database represents the institutional transition
to a computational form of modernism, where paper records
were replaced by tuples identified by a primary key and assem
bled into new kinds of “great tables,” then now we are arguably
entering into an era of the hypermodern. When information loses
its anchorage in physical analogues of filing and record keeping
systems and succumbs to a new set of dissolvent metaphorical
clusters—of cloud computing, agile methods, mobile devices,
virtual machines and an elasticity of resource provisioning
(computational or human)—it loses its last vestiges of tangibility.
Adopting Lewis Mumford’s metaphor of technology, it can be said
to have become “etherealized” (Mumford 1938). For Mumford,

86 the city was a space where, in a strange shifting of metaphors,
information “’etherealized’ through the city into durable elements
in the human heritage” (Mumford 1938, 3, emphasis added). In a
quite different sense, the information space once occupied by the
relational database can similarly be thought of as something in a
hybrid state: simultaneously dissolving, becoming elusive, trans
parent, ethereal and also gathering in insulated and protective
layers, unknowable, a machinic servant receiving inputs and
responding with outputs. The black box is at once opaque and
utterly transparent.

While “vaporware” indicates software that is so soft that it in fact
does nothing, or does not exist, we can imagine an alternative
coinage in which the metaphors of ether and vapor infuse with
that of a new term like cloud computing. But it is not only the
ethereal quality of data management that concerns us here. Such
attributes are, as we have suggested, part of the hype machine
special to the IT industry and its services. Database records still
need to be inscribed as zeroes and ones on magnetic or solid
state discs, which are usually located in largely inaccessible data
centers. What becomes difficult to think here is the simultaneous
properties of ethereal transparency and material opacity that
attend the new data services. The commercial enclosure of
communications infrastructure coupled with the opacity of
algorithmic architectures special to SaaS gives rise to a politics of
the black box.

For the datadependent enterprise this signals, in the first
instance, a calculable tradeoff between direct control and
efficiencies and economies of scale. By shearing off its
dependency on “big iron” mainframe computing to service
providers while continuing to transact in “big data,” the modern
institution simultaneously divests yet another nolongercore
activity—managing its own data—while insinuating itself
yet further into the unstable set of relations that cut across
old institutional lines. Here, the term “architecture,” always
metaphorically overladen when applied to software, is instead

87completely misleading, vanishing into its opposite: a destructured
network of loosely coordinated endpoints, refracting service
requests and responses from point to point. The possibility for
error is accordingly amplified; the responsibility for that error
lost, along with any single locus of control over computational
results. If, as Jaron Lanier recently suggested, “the distinction
between a corporation and an algorithm is fading,” under
the distributed scenarios of a fully realized SOA/SaaS digital
economy even the “algorithm” is no longer singular nor selfcon
tained (Brockman 2014). With the rise of smart cities one finds
an increasing feedback operation in which “all that is solid”
modulates forms of algorithmic governance and viceversa.
Adaptation and transformation is a mutually constitutive process
contained, retrieved and acted upon within the parameters of the
database that is now oriented towards an architecture of service
delivery. The SOA database would be a crude approximation to
this concept of data that is no longer “based” anywhere.

In the broad advent of the SOA/SaaS digital economy any
organization can avail itself of “elastic” data facilities at seemingly
any scale. Any organization can make use of predictive analytics,
business intelligence and a host of ancillary services for data
authentication, search, logging, billing, monitoring, visualization,
conversion, publication and backup. And while these services
may be offered in limited variety, by a limited range of vendors,
any organization can also differentiate itself through the large
combinatory possibilities that an even seemingly small number
of parameters provides. The relational database ushered in new
forms of predictive and justintime data analytics through the
ability to develop ad hoc queries and reports, thereby allowing
modern institutions simultaneously to become homogenized
as a general form while differentiated in parametric specificity.
The SOA database accelerates both sets of tendencies towards
institutional similitude and differentiation. Like the limitless
possibilities a finite set of rules provides in the game of chess,
the SOA database offers an infinitude of institutional forms to

88 emerge within the horizon of its parameters. Similarly, it fur
ther accelerates the condition and precarity of serviceoriented
labor, setting new “standards” for how capital is flexibly accu
mulated and deployed. But where such institutional variation
does occur, it is not reducible to the determining form of the
database. Culture leaks beyond the structural constraints of
data parameters. At the same time the processes of structural
decoupling and disaggregation we describe above also introduce
new prospects for selfcannibalization, creative destruction and
systemic intervention. How to operate outside such limits and
invent new systems of organization and cultures of expression
will comprise a parametric politics of the present.

Bibliography

Aytes, Ayhan. 2012. “Return of the Crowds: Mechanical Turk and Neoliberal States
of Exception.” In Digital Labor: The Internet as Playground and Factory, edited by
Trebor Scholz, 79–97. New York, NY: Routledge.

Böhme, Gernot. 2012. Invasive Technification: Critical Essays in the Philosophy
of Technology. Translated by Cameron Shingleton. London; New York, NY:
Bloomsbury.

Brockman, John. 2014. “The Myth of AI: A Conversation with Jaron Lanier.”
Edge, November 4. Accessed May 27, 2015. http://edge.org/conversation/
themythofai.

Chamberlin, Donald and Boyce, Raymond. 1974. “SEQUEL: A Structured English
Query Language.” Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on
Data description, access and control: 249–264.

Codd, Edgar F. 1970. “A Relational Model of Data for Large Shared Data Banks.” Com-
munications of the ACM 13 (6): 377–387.

Crary, Jonathan. 2013. 24/7: Late Capitalism and the Ends of Sleep. London; New York:
Verso.

DeLanda, Manuel. 2011. Philosophy and Simulation: The Emergence of Synthetic Reason.
New York, NY: Continuum.

DiMaggio, Paul J., and Powell, Walter M. 1983. “The Iron Cage Revisited: Institutional
Isomorphism and Collective Rationality in Organizational Fields.” American
Sociological Review 48 (2): 147–160.

Harney, Stefano. 2014. “Istituzioni algoritmiche e capitalismo logistico (‘Algorithmic
Institutions and Logistical Capitalism’).” In Gli algoritmi del capitale. Accel-
erazionismo, macchine della conoscenza e autonomia del comune (Algorithms of
Capital: Accelerationism, Knowledge Machines and the Autonomy of the Common),
edited by Matteo Pasquinelli, 116–129. Verona: Ombre Corte.

89Harney, Stefano and Moten, Fred. 2013. The Undercommons: Fugitive Planning & Black
Study. New York, NY: Minor Compositions.

Hobsbawm, Eric. 1952. “The Machine Breakers.” Past & Present 1: 57–70. Accessed
May 27, 2015. http://libcom.org/history/machinebreakerserichobsbawm.

Kittler, Friedrich A. 2013. “Protected Mode.” In The Truth of the Technological World:
Essays on the Genealogy of Presence. Translated by Erik Butler, 209–218. Stanford,
CA: Stanford University Press.

Lazzarato, Maurizio. 2014. Signs and Machines: Capitalism and the Production of Sub-
jectivity. Translated by Joshua David Jordan. Los Angeles, CA: Semiotext(e).

Limer, Eric. 2014. “My Brief and Curious Life As a Mechanical Turk.”
Gizmodo, October 20. Accessed May 27, 2015. http://gizmodo.com/
mybriefandcuriouslifeasamechanicalturk1587864671.

Mumford, Lewis. 1938. The Culture of Cities. San Diego, CA: Harcourt.
Olsen, Stefanie. 2008. “Sun’s John Gage joins Al Gore in cleantech investing.”

CNET, June 9. Accessed May 26, 2015. http://www.cnet.com/news/
sunsjohngagejoinsalgoreincleantechinvesting/.

Rossiter, Ned. 2015. “Coded Vanilla: Logistical Media and the Determination of
Action.” South Atlantic Quarterly 114 (1): 135–152.

Scholz, Trebor. 2014. “Platform Cooperativism vs. the Sharing Economy.”
Medium, December 5. Accessed May 27, 2015. https://medium.com/@trebors/
platformcooperativismvsthesharingeconomy2ea737f1b5ad.

Terranova, Tiziana. 2014. “Red Stack Attack! Algorithms, Capital and the Automation
of the Common.” Quaderni di San Precario, February 14. Accessed May 27, 2015.
http://quaderni.sanprecario.info/2014/02/redstackattackalgorithmscapital
andtheautomationofthecommonditizianaterranova/.

The New School. 2014. “Digital Labour: Sweatshops, Picket Lines, Barricades.”
Conference at The Department of Media, New York City, NY, November 14–16.
Accessed May 27, 2015. http://digitallabor.org/.

Tsing, Anna. 2009. “Supply Chains and the Human Condition.” Rethinking Marxism 21
(2): 148–176.

Wark, McKenzie. 2013. “A More Lovingly Made World.” Cultural Studies Review 19 (1):
296–304. Accessed May 27, 2015. http://epress.lib.uts.edu.au/journals/index.
php/csrj/article/view/3170/3454.

Weber, Max. 1930. The Protestant Ethic and the Spirit of Capitalism. London: Allen &
Unwin.

Wikipedia contributors. 2015. “MySQL: History.” Wikipedia: The Free Encyclopedia.
Last modified May 27, 2015, 12:00 CET. Accessed May 27, 2015. http://en.wikipedia.
org/wiki/MySQL#History.

 MOBILE APPS

 APPLE

 APP STORE

 CLOUD COMPUTING

 SOFTWARE AS A SERVICE

The Cloud, the Store, and
Millions of Apps

Anders Fagerjord

The	1.5	million	apps	for	the	iPhone	can	be	used	
for thousands of purposes. Many are cloud-based
services, even more are games and simple utilities.
The idea of Software as a Service is to have one
instance of a program running on a central server,
and only one browser to access these programs.
From	mobile	devices	it	is	more	effective	to	access	
services from apps than from browsers, meaning
that every user will need many apps. Moreover, hard-
ware sensors are equally or more important to apps
than cloud access. Rather than thinking of apps as
software services, we should describe them as actors
in a network where developers, users, and Apple’s
hardware, programming environment and App Store
are important parts.

“The Web is Dead” was the slogan that covered the entire front
page of Wired in August, 2010. Mobile apps provide “simpler,
sleeker services that just work,” editor Chris Anderson wrote
(2010b). Tim O’Reilly responded that “it ’s the backend that
matters,” pointing to the fact that popular services like Twitter,
Google, or Facebook are run in large server centres which can be
reached from web sites and native apps alike (Anderson 2010a).
These servers, called the cloud, are used by many of the most
popular apps. We store our documents and data in the cloud,
sometimes sharing it in social networks, sometimes keeping it
private. They are available to us from any screen we use, from the
little telephone and the midsized tablet to the desktop computer
and even the 50inch TV screen. We still call them telephones and
TVs, but we use them for the same services. It is the cloud, the
backend, that matters, it seems.

Parts of the cloud, or some clouds to be more precise, are
Software as a Service (SaaS) sites, where users can access
computer systems running in central data centres. Instead of
installing the software on their own machines, users access the
systems through a web page. In my university, I file my travel
expenses in one web site, read and write formal correspondence
in another, and write drafts of papers with colleagues in Google
Docs, which is also a web site. All are accessible from a thin client,
my Web browser. As the thin client already is in my computer
(and virtually all other computers) I only need to keep that one
program up to date, and do not need to install and upgrade a
lot of others. It is presumably easier for me, and it saves the
university’s computer department the work with purchasing
upgrades and distributing them to all employees. The main
system exists in only one instalment in the data centre, and may
be updated at any time, without the need to distribute copies to
all users.

Most of the time, however, I find that the web sites are slow and
generally difficult to use. I often long for “simpler, sleeker services
that just work,” to borrow Anderson’s words once more.

93While desktop computers increasingly are used to access remote
software via a Web browser, mobile platforms are used without
the browser, instead favoring a myriad of native apps. We will
untangle this somewhat in the following, and realize early that
the cloud is a nice, simple metaphor for a complex actor network.
A short essay like this can hardly treat one network, let alone
several competing networks, so I will focus on apps made for
Apple’s iOS, running on iPhones and iPads.

To describe a complex network like this, we need to be careful
in the use of words, especially as a term may be understood
differently by different sets of actors.

For a programmer, an app is an abbreviation for any application
program. Here, we will use app as in a more restricted sense,
which we believe is more in line with everyday language: an app is
a small program for a mobile device, downloaded from a central
distributor, an app store.

The term service is crucial for a book on SaaS. Here, we will have
to move away from the everyday understanding of service,
and limit it to the use within Service-oriented Architecture (SOA)
engineering, as defined by The Open Group:

A service is a logical representation of a repeatable business
activity that has a specified outcome (e.g., check customer
credit, provide weather data, consolidate drilling reports,
etc.) and: is selfcontained, may be composed of other
services, is a ‘black box’ to consumers of the service. (The
Open Group 2013)

It should be added that these services are made available over
a computer network. Are apps made of services, being just thin
clients, gateways to the clouds? The truth is that some are, but far
from all. To understand apps, we need to realize they are actors
in a network that we will try to describe in the following.

94 Coordinating Sensors

Sweeping generalisations about apps are common, but an app
can be most anything, from simple a utility to a complex game.
Apple’s App Store contains map applications, medical diagnostic
tools, exercise journals, recipe books and diet journals, banking
apps and bus ticket apps, unit converters, calculators and the
simple flashlight. The only common aspect seems to be the
device: Apps are software applications for mobile devices. Let us
then begin the description of the app networks with the iPhone
itself.

When the iPhone was introduced, Apple announced it as three
new devices combined: An email device, a music player, and a
phone (Apple 2007). We may still tend to think of the iPhone as
a remediation (Bolter and Grusin 1999) of the telephone, but the
technical specification of an iPhone makes it very clear that it is
much more. It is a pocketsized computer with several network
connections: GSM telephony, 801.11 Wifi, Bluetooth, USB, and in
the 2014 models even NearField Communication (Apple 2014a).

Input can be given via the highresolution touch screen, a
microphone and camera on both the front and the back the
phone, and a few buttons. Output is given through the screen,
three loudspeakers, a vibrator, or a powerful LED light, and
more loudspeakers and screens can be connected with wires.
It is important not to forget the sensors: GPS, proximity sensor,
barometer, an accelerometer, a threeway gyroscope for compass
and movement, an ambient light sensor, and a fingerprint
scanner in some models.

An iPhone app is a small program that uses some of these net
work connections, input/output and sensors for a purpose the
user finds useful or entertaining. An app can make calculations,
based on input from the user or the sensors, send and receive
data over a network, and output the results to the user, and
simultaneously send the results over a network. The most

95popular apps are in fact thin clients for Web services, such as
Facebook and Google Maps. They use the network extensively,
and most calculations are performed on the remote server, “in
the cloud”. But other popular apps, for example Angry Birds,
perform calculations on the iPhone, and use the touch screen
and the loudspeakers of the iPhone for interaction. Yet other
apps rely on other sensors, such as Sleep Cycle which uses the
accelerometer to monitor how the users move while sleeping,
or VitalSigns which calculates the pulse and breathing rate of
the person in front of the camera by analysing the image. The
2014 Apple Design Award winner Device 6 is an interactive story
midway between a game and a book, using only the touch screen
and the loudspeakers, while Flashlight uses only the touch screen
to switch the LED flash on and off. Sleep Cycle, VitalSigns, Device
6, and Flashlight do not communicate with any server, they run in
isolation on the iPhone.

To state that there is no software, only services, would be to
narrow down this multitude to only a few kinds of apps. I find
Liestøl’s perspective more fruitful: That we are moving into the
age of sensory media (Liestøl et al. 2012). I believe this transition
needs to be studied extensively, but for this essay, we need to
move on in our description of the network; from the apps running
on the device to the app developers and the environment they
work in.

Here be Software

Kittler received some attention for the provocative article title
“There is no Software” (Kittler 1992), where he argues the many
layers of computer software are only masking the underlying
hardware of the computer. In all its technological determinism,
the article is mainly a critique of modern computers’ Cartesian
foundation. Kittler could code in several programming languages,
and knew very well that software is the quite tangible result of
labour, often tremendous labour. Its layered structure makes this

96 labour more efficient, and instead of analysing it away, a software
studies approach should focus on these different layers, and see
how power is distributed throughout.

One does not design an app by combining web services. Apps for
iOS can only be made with Apple’s XCode programming environ
ment for Macintosh computers. It includes two languages and
70 different frameworks programmers can draw on, including
interface buttons and other elements, cloud storage in Apple’s
server parks, a database system, graphics engines for 2D and
3D development, and interfaces to other parts of iOS, such as
notifications, address book, calendar, maps, camera, and photo
editing software. These frameworks are similar to services both
in being standardised design patterns that developers can rely on
through a relatively simple interface, and in being “black boxes”,
as developers do not need to understand their inner workings.

There are frameworks to support all the three main operations
we outlined above; local calculations, access to the sensors ,
and access to Apple’s cloud services. Programmers may earn
money by using Apple’s frameworks for purchases within the app
through App Store’s payment service, and for banner ads inside
the app. Cloud storage in Apple’s iCloud is available through
another framework, and sharing via Facebook and Twitter is done
via yet another.

XCode is a powerful actor in the network: It regulates what can
be done, what is simple to do, and what simply can’t be done,
and thus has power over its developers. Zittrain uses the iPhone
as a prime example of a “tethered” device that can be remotely
controlled by its manufacturers, in opposition to a “generative”
device that can be made to do anything (Zittrain 2008, chap. 2–3).
This division is too simple. Apple can control some aspects of
iPhones through software updates, and some of the frameworks
and services that developers may use can be remotely controlled.
Developers have still found the freedom to create 1.5 million apps
available in the US store, which seems quite generative. Apple’s

97frameworks rarely lock developers in, but they provide roads of
less resistance. Large corporations like Facebook operate their
own services that their apps use. Smaller developers will have
to develop their own services, or they can take the simpler route
and use Apple’s. Rather than using a dichotomy of generative/
tethered, we should follow Kittler’s example (if not his con
clusions) and study the degrees of freedom available through the
software layers.

Software as a Service is often pictured as an architecture that
makes programming simple. Apparently, developers do not
need to code, just assemble different services, like a child con
necting Lego bricks. Programming for iOS programming is a far
way from this. Just to create the traditional beginners’ “hello
world” message requires a list of different files, most of which
are unintelligible for a beginner. 500 million iPhones have been
sold (Costello 2014), only 350 000 of the owners have registered
as developers, and many of these developers (we do not know
how many) have never uploaded an app to App Store. One could
imagine a phone so easy to program that users would create
a flashlight app, not download one, but the iPhone is not that
product.

App Store: The Obligatory Passage Point

Just as XCode is the only programming environment, Apple has
a monopoly on distribution; developers can’t just send apps to
their friends. To test a new app on an actual iPhone, the devel
oper must purchase a $99 per year license from Apple (Apple
2014b). The app can be tested on a few devices only, and can only
be distributed further via Apple’s App Store. This is the main
node in the iOS network we are describing, and what Callon (1986)
would describe as an “obligatory passage point.”

App Store contained close to 1.5 million apps at the end of 2014.
It is a place for small businesses, as discussed by Snickars (2012)

98 and Flueckiger (2012), although major services power the most
popular apps (App Annie).

Apple reviews every app before it is allowed into the App Store,
and the “App Store Review Guidelines” (Apple 2015) contain 179
rules. Apple controls that apps are reliable, safe, and consis
tent with the iPhone interface guidelines. Apple also protects its
market position, and “apps or metadata that mentions the name
of any other mobile platform will be rejected” (rule 3.1). Violence,
racism, sex, medical advice and mentions of drug, alcohol, or
nicotine use are all strictly governed. This has spurred a debate
on censorship, as witnessed by the Wikipedia page “Censorship
by Apple” (Wikipedia contributors 2015).

Apple collects a fee for every review. Approved apps can be dis
tributed for free, or the developer can choose to sell it, in which
case Apple keeps 30 percent of the revenue. To download an
app, users must submit their private Apple ID and password, and
charge paid apps to the credit card associated with the account.

Apple is by far the strongest power in these meetings with devel
opers, software, registration fees and credit card companies,
these “trials of strength” (Latour 1988). Developers also have
power, however. The iPhone had not been the success it is
without this tremendous creativity on the part of the developers,
as Snickars (2012) has shown. Users on their side judge, one by
one, which apps they want to install and use, which is no small
power, as the competition for downloads is strong. When users
choose which apps to keep, they arbitrate in the trials of strength
between the other actors.

Mobility and Ubiquity: Clients and Clouds

We have drawn a quick sketch of the app network, indicating
some power relations. We now can return to the question of
SaaS. App development is not mashing up services by the inex
perienced. Still, apps may connect to Facebook, Twitter, Google’s

99many services, and personal storage clouds like Evernote or
DropBox. This is ubiquitous computing: Your data is always with
you; the clouds are always over your head. But the idea of the
one thin client for all software is lost. Although the mobile phone
is powerful it is too slow for the advanced clientside scripts
that modern web services use. Mobile telephony networks
are also much slower than broadband connections in desktop
computers. Efficiency is a major reason to create an app rather
than using the telephone’s web browser. Apple’s Objectivec is
more efficient than JavaScript, and gives the developer more con
trol over the many software frameworks and hardware sensors.
Another reason is the tiny screen: The browser has a few lines of
user interface (known as “chrome”) that eat up precious space.
Facebook on the Safari browser is shown with the address bar on
top and the back button and other controls on the bottom. The
Facebook app can use the whole screen, and is at the same time
more efficient.

Cloud computing on the phone is not one, but many thin clients.
Each of these must be installed and kept up to date, and while the
App Store software can notice users of available updates, SaaS's
main promise of no installs, no upgrades is lost.

Conclusion

Apps will not kill the Web. While there are some overlaps between
web sites and apps, there is a considerable number of apps that
never have been, and never will be web services. Anderson’s
point is that a lot of what is now available as commercial services
on the web, such as news and social media, can be delivered
more efficiently and reliably on apps tailormade for each plat
form. It should not be a surprise that the media industry is what
is most visible from Anderson’s perspective as an editor of a print
magazine. Amateur participation is for Zittrain and others the
strength of the Web, and the one aspect that makes it a unique
technology.

100 Amateurs make many apps, but most apps are probably made by
professional programmers in their spare time. To create an app
is to enter a network of, Apple’s programming languages and the
Xcode application, Apple’s approval service, Apple’s App Store,
users, and the iPhone itself.

Apps are more than services, they are applications that put the
iPhone’s computing facilities, network connections, sensors and
output devices to use for purposes that do not provoke Apple,
and that users find meaningful.

I would like to thank Anders Sundnes Løvlie, Frode Guribye,
Kjartan Michalsen, and Johannes M. Ringheim for insightful
discussions. The Department of Media and Information Science,
University of Bergen kindly lent me the office space where I wrote
this text.

Bibliography

Anderson, Chris. 2010a. “The Web Is Dead? A Debate.” Wired, September 17.
Accessed December 19, 2014. http://www.wired.com/magazine/2010/08/
ff_webrip_debate/.

Anderson, Chris. 2010b. “The Web is Dead: Long Live The Internet.” Wired,
September 17. Accessed May 27, 2015. http://www.wired.com/2010/08/ff_webrip.

App Annie. “iOS Top App Charts.” Accessed April 14, 2015. https://www.appannie.
com/apps/ios/top/?_ref=header&device=iphone.

Apple. 2007. “Apple Reinvents the Phone With the Iphone.” Apple Press Info, January
9. Accessed December 19, 2014. https://www.apple.com/pr/library/2007/01/09
AppleReinventsthePhonewithiPhone.html.

Apple. 2014a. “Iphone 6: Technical Specifications.” Apple iPhone. Accessed December
19, 2014. http://www.apple.com/iphone6/specs/.

Apple. 2014b. “iOS Developer Program.” Apple Developer. Accessed December 19,
2014. https://developer.apple.com/programs/ios/.

Apple. 2015. “App Store Review Guidelines.” Apple Developer. Accessed April 14, 2015.
https://developer.apple.com/appstore/review/guidelines/.

Bolter, Jay David, and Richard Grusin. 1999. Remediation: Understanding New Media.
Cambridge, MA: MIT Press.

101Callon, Michel. 1986. “Some Elements of a Sociology of Translation: Domestication
of the Scallops and the Fishermen of St Brieuc Bay.” In Power, Action and Belief: A
New Sociology of Knowledge?, edited by John Law, 196–223. London: Routledge.

Costello, Sam. 2014. “How Many Iphones Have Been Sold Worldwide?” about tech.
Accessed December 19, 2014. http://ipod.about.com/od/glossary/f/howmany
iphonessold.htm.

Flueckiger, Barbara. 2012. “The Iphone Apps: A Digital Culture of Interactivity.” In
Moving Data: The Iphone and the Future of Media, edited by Pelle Snickars and
Patrick Vonderau, 171–183. New York: Columbia University Press.

Kittler, Friedrich. 1992. “There is no Software.” Stanford Literature Review 9 (1): 81–90.
Latour, Bruno. 1988. The Pasteurization of France. Cambridge, MA: Harvard University

Press.
Liestøl, Gunnar, Anne Doksrød, Šarunas Ledas, and Terje Rasmussen. 2012.

“Sensory Media: Multidisciplinary Approaches in Designing a Situated & Mobile
Learning Environment for Past Topics.” International Journal of Interactive Mobile
Technologies 6 (3): 24–28.

Snickars, Pelle. 2012. “A Walled Garden Turned Into a Rainforest.” In Moving Data: The
Iphone and the Future of Media, edited by Pelle Snickars, and Patrick Vonderau,
New York, NY: Columbia University Press.

The Open Group. 2013. “Using TOGAF to Define and Govern SOAs: ServiceOriented
Archtecture Defined.” The SOA Source Book. Accessed May 27, 2015. https://www.
opengroup.org/soa/sourcebook/togaf/soadef.htm.

Wikipedia contributors, “Censorship by Apple.” Wikipedia: The Free Encyclopedia.
Last modified February 22, 2015, 14:04 CET. Accessed April 14, 2015. http://
en.wikipedia.org/w/index.php?title=Censorship_by_Apple&oldid=648325693.

Zittrain, Jonathan L. 2008. The Future of the Internet and How to Stop it. New Haven,
CT: Yale University Press.

 DOS

 NETWORK POLITICS

 INTERNET ECONOMY

 KIMDOTCOM

 COMPUTER VIRUS

 SECURITY

 DDOS

Denials of Service
Jussi Parikka

This article addresses denial-of-service attacks as
one key entry point to understanding contemporary
issues in network politics. By way of underlining the
spiraling feature of the Internet economy as based
on security and attack services, it leads into dis-
cussing	the	December	2014	DoS	attack	against	Sony	
and Xbox gaming networks which were resolved
by	Kimdotcom	offering	the	hackers	vouchers	for	
his	file-sharing	service,	Mega.	The	article	considers	
the implications of this and other examples in the
context of how service has also come to denote a
relationship to Internet infrastructure: Servers and
the speed of Internet connections that can be slowed
down	or	flooded	by	way	of	denial-of-service	attacks.

Assumed Service

Service can be considered a general term that designates one
major axis of network politics. Software is a service on so many
levels. It is, after all, under the rubric of service that one enters
into platforms and their terms of use; is granted or denied access
to content such as newspapers, media or other things behind
a paywall; gets connected on social networks such as gaming
network and other forms of fun that, too, are a service. As by
the end of this short text becomes clear, denial-of-services (DoS)
are also services—and they can also be tackled with the further
provision of service vouchers. The softwarebased economy is
one of competing services whether we are talking of the official
platforms such as social media or the more informal, sometimes
criminal, services such as DoS.

Service also implies key cognitive and social skills as the site of
extracting value and monetisation. It is, after all, in the service
economy that services are effectively invented as ways of
accessing your needs, relations and other forms in which value
might be discovered. The social is not merely about the factory,
as we learned in the postFordist political theory; the social is
also a service as long as one is able to package it as such. In other
words, in the contemporary social media and service economy,
the social is accessed as a service.

Besides being a nexus of such relations, where the social and
the economic conflate, one can approach service through
another link. In terms of technological culture and technological
(media) systems, one can follow in the footsteps of Paul Virilio
and Wolfgang Schivelbusch in starting to track the nature of
technological systems through their breaking points. With the
invention of the train comes the train wreck, the history of
aviation is one of a systematic relation to the air craft accidents
and similarly across a range of technological inventions, one can
write the history of their specific accidents. One can write the
media archaeology of technology through its breaking points and

105analyze how, for example, computers, software and networks
such as the Internet, look if one starts from their specific forms
of accidents. One can claim that computer worms and viruses
have been one such central form of an accident that unfolds the
wider logic and implicit infrastructural desires of network culture
in relation to universal communicability, exchange and sharing
(Parikka 2007; Cohen 1986). This suggests that one can also
address the issue of services from the perspective of denialof
service attacks, one recurring/repetitive form of softwarebased
practice that has been coined both as a new form of new political
activism and as much as harmful hacking.

Through DoS activities, the idea of services as the mask of
software becomes one related to security and commerce.
In short, denialofservice attacks have become part of the
vocabulary of media reports and security evaluation of Internet
culture since the latter half of the 1990s. In simple, rather non
technical terms, denialofservice attacks work by bombarding a
specific address and its server. The Internet economy of “pings”
and “hits” is turned against itself by a technicallyinduced surge
in “popularity” over a short period of time, causing the server to
crash and become unavailable. The whole attack has a curious
relation to the time of the Internet “pings” (see Pias 2011) and the
timecritical infrastructure of the Internet (Ernst 2013) in terms
of producing a request time out; or in other words, producing
a situation of technical inability to handle requests (being
flooded, a situation of service desk management under extreme
customer inflow, so to speak). Situations of bureaucracy and
customer service turn into problems of Internet traffic and its
protocological management, just like social situations of services
and servantry have turned into both symbolic signs and cultural
techniques of the software search economy (Krajewski 2010).
Software turns around the axis of service, whether providing or
denying service.

106 Cultural Techniques of Denial

As writers such as Finn Brunton (2013) have explained, DoS
or distributed-denial-of service (DDoS) attacks using botnets,
are a feature of the history of malicious software. As early as
the late 1980s and early 1990s, dangers of worms and viruses
were identified in the context of commercial transactions,
communication and services. Security measures extended
to insurance with Lloyds of London in 1989 already offering
packages for networkrelated incidents. The policy was to cover
against loss of telecommunications, software and data faults,
as well as virus attacks. Around the same period, Control Risks
Group Ltd. formed a new company called Control Risks Infor
mation Technology Ltd. (CRIT), which was tasked with combatting
computer crime, including espionage, fraud, malicious or illegal
data modification, and denial or destructionofservices (Parikka
2007, 73). In the unending spiral of the service economy, this situ
ation refers to a service to cover against loss of service.

Worms such as Mydoom (2004) and many others have become
milestones in this alternative history of the Internet service
economy (read through its underbelly). However, the various
cultural techniques of actually denying a service, are even
more abundant, including smurfing and fraggling as ways to
enforce bandwidth consumption, ICMP (Internet Control Message
Protocol) echo request/reply pinging, and even by sending single
malicious packets such as the Invite of Death attacks using the
Internet telephony protocol (VoIP). Such techniques relate to the
protocological nature of the Internet (Galloway 2004) but also
open up as specific ways of emphasizing the issue of service over
software. Of course, when it comes to issues of service and their
denials, through a DoS perspective one starts to appreciate how
even zombie networks of bots are part and parcel in the for
mation of the service relations of Internet platforms. A thousand
captured machines pinging your favorite games service network
is the call of the halfdead slowing down your bandwidth.

107This primacy of service and its denial is an interesting feature in
terms of softwarerelated techniques. Indeed, it is one way of
beginning the task of unfolding the peculiar emphasis on Internet
sociability as one of relations of service. For there to be denial
ofservice, an assumption of service has to be established as one
prime feature of the social digital networks and its platforms.
The discourse of services is actually a way of starting to consider
whether, instead of software, the issues highlighted and at the
centre of this sort of Internet “politics” are ones of servers, not
software; of data traffic and speeds, not programs? Naturally one
should not consider these things as binary opposites, but when
referring to software politics, software studies, and other related
terms, one has to remember that not all of the software focus
refers back to end user programs, but the wider infrastructural
questions and their service relations which sustain the specific
modes of subjectivity in network economies: servers, servants,
services and their customers (see Krajewski 2010 and 2013 for a
thorough media history of servantry).

It is in this context, that the relation of service to “network pol
itics” is emphasized with a twist. The serviceinduced bracketing
of software—there is no software, only services—is a feature that
can be addressed by way of analyzing the logic of DoS and service
as a feature negotiated as part of Internet infrastructure: servers,
bandwidth, slowness and speeds of pings, etc. Services offer
access to content, but are also underpinned by how such content
and the affective/cognitive economy is reliant on infrastructure.
Over the past years, issues of net neutrality have dictated a major
chunk of the debate on network politics: who is allowed to dictate
Internet speeds, potential offering a fast lane to the best paying
services over less wealthy users?

DoS offers a further commentary as to the speed and slowness
as services. One can even buy this slowing down as a service
by way of hiring suitable hacker groups (Brunton 2013; Dredge
2014), just like one is offered services of “neighborhood watch”
of distributed webmasters, data management and distributed

108 clouds to ensure the accessibility of your site even for individuals
or small groups/companies (e. g. CloudFlare 2015). Security
services extend from mere protection against malicious software
to encompass visitor management, content distribution across
servers, and traffic optimization.

In any case, all of this illuminates the various levels at which
service operates from the service one buys and assumes in terms
of content, feeling, user satisfaction and such enduser customer
contexts, but also the infrastructural level involved in a network
relation: for example, the assumed speed.

Voucher Solutions

As an example of the curious twists of the discourse of service
and denialofservice in Internet culture, consider this example
from the end of 2014. During the Christmas holidays in 2014, on
Boxing Day, the hacker group Lizard Squad claimed responsibility
for a denialofservice attack on the Sony Playstation and Xbox
networks. In the middle of the postChristmas gaming frenzy,
the attack brought down the networks, making headlines as the
hacking incidents had done earlier in December. The alleged
North Korean hacking of Sony reached an odd consumercen
tred “political” debate about censorship as it looked like Sony
would pull its film The Interview from distribution. Of course, the
Sony hack by the group Guardians of Peace focused primarily on
capturing a wealth of material from Sony and was different to the
Lizard Squad attack.

In a manner that also provides a curious commentary on the
notion of network politics, the Lizard Squad situation was
resolved by a very surprising mediator, Kimdotcom, the con
troversial founder of Megaupload, the Mega storage/sharing
service and a vocal Internet rights and freedoms activist.
According to his own testimony, the hackers were offered
vouchers for premium Mega Lifetime accounts in exchange
for ending the attack and promising never to do it again.

109The situation was resolved with both sides releasing Twitter
statements.

Lizard Squad (@lizardmafia) commented in a very satisfied tone:
“Thanks @KimDotcom for the vouchersyou’re the reason
we stopped the attacks. @MegaPrivacy is an awesome
service.”

The happy tone was echoed by Kimdotcom on Twitter: “Xbox Live
and PSN services coming back. Many regions fully restored.
Full recovery imminent. Enjoy your gaming holidays. You’re
welcome :)”

Later on the same day, December 26, 2014, “Remember... Lizard
Squad only gets the benefit of free Mega premium accounts
if they don’t attack Xbox Live & PSN again. #Thatsthedeal”.

This did not, however, stop Lizard Squad from offering their
services as a separate DDoStool called the LizardStresser that
one could hire for Internet attack needs: “LizardStresser’s highest
level of attack promises 30,000 seconds—just over eight hours—
for $129.99 a month or $500 for for ‘lifetime’ usage” (Dredge 2014).

Besides DDoS as a service, the case of the Mega storage/sharing
platform is also a curious commentary on the Internet economy.
As part of the new vanguard of Internet hero sort of politics
of individual cultproducing freedom fighters (alongside, for
example, Julian Assange) Kimdotcom’s politicsaccusedofpiracy
has turned to quoting the Universal Declaration of Human Rights
on the home page of the storage/sharing platform Mega, branded
as

The Privacy Company: No one shall be subjected to arbi
trary interference with his privacy, family, home or
correspondence. Everyone has the right to the protection of
law against such interference. (Mega 2015a)

Storage and privacy become part and parcel of their business, or
more specifically, as specified in Mega’s Terms of Service:

110 Our service includes UCE [user controlled encryption]. You
should keep your encryption keys safe and confidential and
not release them to anyone unless you wish them to have
access to your data. If you lose or misplace your encryption
keys, you will lose access to your data. We strongly urge you
to use robust antivirus and firewall protection. (Mega 2015b)

Significantly, as hacking and related techniques have been
adopted as part of the discourse of network politics over the
past years, it can also refer to a serviceoriented “politics” or
“diplomacy” that counters denialsofservice with access to
service. Kimdotcom’s offer (#thatsthedeal), counters the hacker
actions by a Christmas gift of free encrypted storage vouchers
ensuring access to gaming network services for millions of
users. The culture of vouchers, from shopping and even the
privatization of service economies in the wake of austerity
policies, signify the ability to choose to be cherished by neoliberal
discourse.

Anyhow, in our case, it marks a variation of “there is no software,
there are just services” to “there is no software, just vouchers”—a
quasipolitical serviceoriented solution to problems of
denialsofservice.

Many thanks to Geraldine Juárez for her feedback and ideas.

Bibliography

Brunton, Finn. 2013. Spam. A Shadow History of the Internet. Cambridge, MA: MIT
Press.

Cohen, Frederick B. 1986. Computer Viruses. A Dissertation presented at the Uni
versity of Southern California, December.

CloudFlare. 2015. “Give us five minutes and we’ll supercharge your website.” Cloud-
Flare, Inc. Accessed May 28, 2015. https://www.cloudflare.com/.

Dredge, Stuart. 2014. “Lizardsquad now helping anyone copy its Plays
tation and Xbox attacks.” The Guardian, December 31. Accessed May

11128, 2015. http://www.theguardian.com/technology/2014/dec/31/
lizardsquadddosserviceplaystationxboxlizardstresser.

Krajewski, Markus. 2010. “Ask Jeeves. Servants as Search Engines.” Grey Room 38
(Winter): 6–19.

Krajewski, Markus. 2013. “The power of small gestures: On the cultural
technique of service.” Theory, Culture & Society 30 (6): 94–109.
Mega. 2015a. “Info.” MEGA: The Privacy Company. Accessed May 28, 2015. https://

mega.co.nz/#info.
Mega. 2015b. “Terms of Service.” MEGA: The Privacy Company. Accessen May 28, 2015.

https://mega.co.nz/#terms.
Parikka, Jussi 2007. Digital Contagions. A Media Archaeology of Computer Viruses. New

York: Peter Lang.
Pias, Claus 2011. “The Game Player’s Duty. The User as the Gestalt of the Ports.”

In: Media Archaeology. Approaches, Applications and Implications, edited by Erkki
Huhtamo and Jussi Parikka, 163–183. Berkeley: University of California Press.

Authors

Seth Erickson is a PhD candidate at the Department of Infor
mation Studies, University of California, Los Angeles. His dis
sertation focuses on software development practices in con
temporary digital scholarship.

Anders Fagerjord is Associate Professor of Media Studies at the
Department of Media and Communication, University of Oslo.
His research interests include locative media, design theory,
multimodality and multimedia theory; and the concept of “con
vergence.” Outside of academia, he has worked as a web designer
and radio host.

Irina Kaldrack is a Postdoctoral Researcher at the Digital
Cultures Research Lab, Leuphana University of Lüneburg. Her
work concerns new methods in the digital age, the theory and
history of digital cultures, the scientific history of motion, and the
cultural history of mathematics.

Christopher M. Kelty is Professor of Information Studies and
Anthropology at the University of California, Los Angeles. He is
the author of Two Bits: The Cultural Significance of Free Software.
Current research projects can be found at http://kelty.org/.

Martina Leeker is Professor of Methods in Digital Cultures and
Senior Researcher at the Digital Cultures Research Lab, Leuphana
University of Lüneburg. She is a scholar and lecturer for theater
and media studies. Her research concerns artistic/practical
research in digital cultures, discourseanalytical media theory,
mediaanthropology, art and technology, theater and media.

Andrew Lison is a Postdoctoral Researcher in the Digital
Humanities at the Hall Center for the Humanities, University of
Kansas. He is coeditor, with Timothy Scott Brown, of The Global
Sixties in Sound and Vision: Media, Counterculture, Revolt (Palgrave
Macmillan, 2014). His work has also appeared in New Formations
and Science Fiction Studies.

114 Liam Magee is a Senior Research Fellow at the Institute for
Culture and Society, University of Western Sydney. He is co
author of Towards a Semantic Web: Connecting Knowledge in
Academic Research (2010).

Christoph Neubert is a Postdoctoral Lecturer for Media History
at the Department of Media Studies, University of Paderborn
and senior member of the DFG Research Training Group
“Automatisms.” His research interests include media theory and
history, the epistemology of traffic and logistics, and the history
of ecology.

Jussi Parikka is Professor of Technological Culture & Aesthetics
at Winchester School of Art, University of Southampton. He is
the author of several books on digital culture and media theory,
including What is Media Archaeology? (2012) and most recently A
Geology of Media (2015).

Ned Rossiter is Professor of Communication at the Institute
for Culture and Society, University of Western Sydney. His book
Software, Infrastructure, Labor: A Media Theory of Logistical Night-
mares is forthcoming in 2015.

digital cultures series

www.meson-press.com

ISBN 978-3-95796-055-9

Irina Kaldrack, Martina Leeker (eds.) 
There is no Software, there are just Services

Is software dead? Services like Google, Drop-
box, Adobe Creative Cloud, or Social Media apps
are all-pervasive in our digital media landscape.
This marks the (re)emergence of the service
paradigm that challenges traditional business
and license models as well as modes of media
creation and use. The short essays in this
edited collection discuss how services shift the
notion of software, the cultural technique of
programming, conditions of labor as well as the
ecology and politics of data and how they influ-
ence dispositifs of knowledge.

	Contents
	There is no Software, there are just Services: Introduction
	“The Tail on the Hardware Dog”: Historical Articulations of Computing Machinery, Software, and Services
	The Durability of Software
	From Shrink Wrap to Services: The Universal Machine and Universal Exchange
	Service Orientations: Data, Institutions, Labor
	The Cloud, the Store, and Millions of Apps
	Denials of Service
	Authors

