
“The Tail on the Hard-
ware Dog”: Historical 
Articulations of 
Computing Machinery, 
Software, and Services

Christoph Neubert

The emergence of service-oriented business models 
in	the	computer	industry	over	the	last	15	years	is	
part of broader historical dynamics underlying the 
relations between hardware, software, and services. 
This	article	traces	the	changing	configurations	of	
this triad with a particular focus on the economic, 
technological, and social construction of “software” 
in exemplary contexts. The historical evidence opens 
analytical and critical perspectives on the current 
rearticulation of software in terms of “services.”



There is no software. It strikes one as a historical paradox that this 
claim, defended by Friedrich Kittler in the early 1990s with critical 
rigor against the ideology of human control over seemingly trans
parent computer hardware (Kittler 1992, 1993, 2014), resonates 
with business models hailed by today’s computer industry under 
the labels of Software as a Service (SaaS) and Service-oriented 
Architecture (SOA). Taking this paradox seriously, I will consider 
the idea of an epochal transition from software to services 
pursued by the present volume under a broader historical 
perspective, starting with the observation that the distinction 
between hardware, software, and services does not lie in the 
nature of things, but is a product of complex historical processes. 
In essential respects, the current convergence of software and 
services reverses a historical development: The proposition 
that there is no software but only services describes a situation 
characteristic of the computer industry until the 1970s. The sup
posed decline of software has thus to be evaluated in the light 
of the emergence and transformation of “software” as technical 
artifact, economic good, and social dispositive. Witnessing its 
disappearance, the question arises: How did software come into 
being in the first place?

Systems and Programs

In the context of computing, the first usage of the term “software” 
in print is ascribed to the statistics professor John W. Tukey 
in 1958 (Shapiro 2000). The word was probably coined earlier 
verbally and in working papers, perhaps by Paul Niquette in the 
1950s (Niquette 2006), or already in the late 1940s by the RAND 
mathematician Merrill Flood (Cerruzi 2003, 365, 372). However, 
according to the Oxford English Dictionary, the word “software” 
came into broader use not before the early 1960s, referring to 
the “body of system programs, including compilers and library 
routines, required for the operation of a particular computer 
and often provided by the manufacturer, as opposed to program 
material provided by a user for a specific task” (OED).



23

[Fig. 1] “Tin Canned Software” (Cybermatics 1971).

As this description already suggests, the historical notion of 
software crucially differs from our present understanding in 
several respects (cf. Haigh 2012). In a narrower sense, the con
cept comprised systems software such as operating systems, 
assembly systems, programming tools and compilers. In a wider 
sense, software was taken to include media such as punched 
cards and magnetic tapes, but also written documentation and 
even human activities such as system analysis or training. Being 
linked closely to computer hardware on the one side, and to all 
sorts of services on the other, software did not cover what we 
take as its essence today, namely applications. A second aspect 
distinguishing the historical from the present understanding is 
that software was not originally a commercial product: Operating 
systems (OS), utilities, and programming tools were provided 
free of charge by the hardware manufacturers, being considered 
part of general services a firm bought or rented together with 
a hardware installation. Programs for specific business tasks 
such as payroll, file systems, or accounting, on the other hand, 



24 were highly customized and usually written inhouse by the data 
processing staff of the firms.

For a long time, software represented “only the tail on the hard
ware dog” (Bender 1968, 243). Accordingly, the software industry 
emerging since the mid1960s was marginal and provided 
programming services rather than standardized products. Even 
where programs were offered as “canned” solutions (Figure 1), 
the proposed deal included hardware infrastructure, training, 
and customization. First attempts to acquire programs that had 
been developed by individual firms and sell them on a license
basis as packaged applications to other customers in the same 
business were not undertaken before the late 1960s, and with 
little success (Brown 2002; Head 2002). Even providing a cata
logue of useful software solutions did not meet the customers’ 
needs or expectations (Welke 2002). The idea to pay for software, 
especially for standardized products that were not even adapted 
to a firm’s specific requirements, seemed to make no sense. The 
often cited “software crisis”of the 1960s manifested in scarcity 
of qualified personnel (Ensmenger 2010, 51ff.), but questions of 
structured product design and the Taylorization of coding labor 
in an emerging software industry did not become relevant before 
the 1970s. Indeed, the term software engineering in the sense of 
“the professional development, production, and management of 
system software” (OED) was first used in 1968 (Mahoney 2004).

Time Sharing

The bias towards services characteristic of the computing 
industry of the 1950s and 1960s was largely due to enormous 
hardware costs. Large mainframe and minicomputers rep
resented expensive infrastructures that were supplied to cus
tomers in terms of a “computer utility rhetoric.” Just as electricity 
consumers did not keep their own power plants, “it would be 
cheaper and more reliable for organizations to buy information 
processing from a service provider, rather than owning a 



25mainframe computer” (CampbellKelly and GarciaSwartz 2007, 
752). The technology underlying this service model is known as 
time sharing. The concept of time sharing was developed in the 
late 1950s, mainly motivated by the aim to make efficient use of 
expensive mainframe computers by avoiding idle times. Time 
sharing refers to the (seemingly) simultaneous access of multiple 
users that are connected via terminals to a central computer, 
technically based on the flexible allocation of CPUtime to con
current user processes. The first experimental implementation, 
the Compatible Time Sharing System (CTSS), was deployed at the 
MIT in 1961 on an IBM 709 computer, followed in 1963 by the 
CTSS II on an IBM 7094 that allowed access of 30 remote users 
(Auerbach 1973, 65). Further time sharing systems were devel
oped in the following years for various platforms by IBM, by Bolt, 
Beranek, and Newman, and by General Electrics in cooperation 
with Dartmouth College.

Evolved in universities and research centers, the technology 
of time sharing translated readily into a business model. The 
first commercial provider, Adams Associates, appeared in 1963, 
followed by IBM in 1964 (Auerbach 1973, 65). Even with the advent 
of IBM’s System/360 in the same year, computing hardware 
remained expensive and installations time and resource con
suming, so only larger administrations and firms could afford 
to rent or even buy the respective equipment and keep the 
required personnel. Many smaller companies outsourced their 
data processing activities and took recourse to the services of 
time sharing providers, who offered remote access over public or 
private data lines to computing infrastructure including hard
ware, programming environments (e.g. for COBOL, FORTRAN, 
and BASIC), software packages, file storage, and print services. 
Customers typically rented the required terminal equipment and 
were charged for parameters such as CPUtime, connection time, 
and storage volume.



26 Unbundling

The emancipation of a dedicated software industry from the 
previous economy of hardware and services involved two 
major steps. The first step was the emergence of the enter
prise software sector since the 1970s, which was accompanied 
by a variety of technological, economic, and social innovations, 
including the standardization of products, new business and 
marketing models, a changing mentality of customers, profes
sionalization of programmers, the rise of software engineering 
and corresponding methods such as structured programming 
and the systematic reuse of code in terms of software libraries, 
the development of interpreters and compilers for highlevel 
computer languages, and the introduction of affordable and 
compatible hardware systems such as the IBM S/360 series (cf. 
Johnson 2002; Goetz 2002a, 2002b).

The efforts it took to invent software as an economic good and 
product in its own right is impressively illustrated by the incidents 
that led IBM to give up the practice of bundling programs with 
hardware and services. On January 17, 1969, the U.S. Depart
ment of Justice filed a suit against IBM, charging the company 
with monopolizing the generalpurpose computer market; the 
bundling of services, software and machinery was taken to be 
anticompetitive and illegal. It took the Antitrust Division six years 
to bring the case to trial in 1975, and it lasted another six years 
before it was finally dropped in 1982, then considered to have 
been “without merit” (cf. Johnson 1982; Kirchner 1982). However, 
in preparation of one of the longest and costliest antitrust trials 
in history, some 30 billion pages of paperwork were provided. 
During the trial,

Some 2,500 depositions were taken in all, and IBM compiled 
and stored in special warehouses 66 million pages of 
evidence. At the lawsuit’s peak, more than 200 IBM lawyers 
were working on the case, on whom the company spent 
tens of millions of dollars annually. […] The parties called 



27974 witnesses […] and produced 104,400 pages of testimony. 
(Anthes 1989, 65)

While the case was negotiated, IBM issued internal directives sup
pressing the description of programs as products: 

We should realize that discussing [applications] programs 
separate from the machines in advertising or presentations 
is inconsistent with our fundamental position that hardware 
and software including programs are an indivisible product 
[...]. (cited in Arnst 1977, 4)

On the other hand, IBM reacted very fast to the legal issues 
raised by the Justice Department. An “unbundling task force” 
had already been formed in 1966 in the context of introducing 
the S/360 series (cf. Grad 2002; Humphrey 2002), and on June 23, 
1969, IBM announced its decision to pursue separate pricing of 
hardware, software, and services. This date has been taken as the 
birth of the software industry or “Independence Day for software 
firms” (Gibson 1989, 6), though in retrospect, it is more likely that 
IBM’s decision was not the cause but rather a symptom or effect 
of an emerging business sector. In any case, the unbundling affair 
provides a striking impression of the complexities raised by the 
emancipation of software. 

Mass Markets and Pricing Models

After the quarrels in the enterprise sector during the 1960s and 
1970s, the second major step towards software as a product is 
linked to the growing impact of the personal computer (PC) since 
the 1980s, which opened a mass market for consumer software 
(cf. CampbellKelly 2001). The PC served as host for packaged 
software applications offered to customers in shrink-wrapped 
boxes, and this software in turn played an important role for the 
domestication of computer hardware, its integration into the 
environments of offices and private households. At the same 
time, the concepts of layered architecture and protocol stacks 



28 as formulated in the OSIreference model allowed to establish 
basic standards for the interconnection of computers, initiating 
the transition of the terminalmainframe logic of enterprise 
computing towards the clientserver logic of intranets and the 
Internet. Networked computing and the WWW opened new 
software markets for client and server operating systems (Novell 
Netware, Microsoft NT), web browsers (Netscape, Microsoft), web 
publishing software (Macromedia, Adobe), and antivirus software 
(Symantec).

The Internet business soon blurred the distinction between the 
economic sectors of services, enterprise software, and consumer 
software in the reverse order of their historical appearance: 
massmarket vendors such as Microsoft entered the enterprise 
software business, and later both consumer and enterprise 
software vendors turned to services (cf. CampbellKelly and 
GarciaSwartz 2007, 736f.). The Internet also enabled new forms 
of collaborative work on programs leading to the Open Source 
movement. The impact of Open Source and “free” software, in 
particular of Linux, together with other trends such as the rise 
of mobile media and gadgets, the crash of the Internet economy 
around 2000, and the increasing commoditization of hardware 
and proprietary software led to the decline of the software 
product paradigm established in the 1980s and to new strategies 
of value generation. One interesting development in this con
text is the appliances model that returns to the idea of bundling 
proprietary software and hardware as a boxed product (Hein 
2007). Appliances in this sense include consumer products such 
as game consoles, mp3players, navigation devices, and per
sonal gadgets of all sorts, but also enterprise appliances such as 
routers, or dedicated equipment for email and firewall services. 
Another strategy employs marketing platforms for nonsoftware 
products such as music downloads or ebooks, the streaming 
of multimedia content, the promotion of social and business 
services, or the bundling of “free” software with advertising. 
These changes indicate a general turn of the computer industry 



29from vertical to horizontal integration and an orientation towards 
downstream revenues and services. The remaining software 
vendors were accordingly driven towards new pricing models: 

Traditional product sales and license fees have declined, and 
product company revenues have shifted to services such as 
annual maintenance payments that entitle users to patches, 
minor upgrades, and often technical support. (Cusumano 
2008, 20). 

Besides payment for maintenance, the classic onetime upfront 
license fee has been replaced by subscription or payperuse 
models that ensure a constant revenue stream, even during 
economic downturns. Such pricing models have far reaching 
consequences for the planning, versioning, and maintenance 
of products (Olsen 2006). In particular, since the development 
of new software releases and upgrades is mainly motivated by 
marketing requirements “creating the illusion of a new product 
to justify the repeated resale of what is fundamentally the 
same good” (268), the subscription model eliminates the dis
ruptive effects of release cycles. On the other hand, software 
subscription tends to generate a lockin of customers, which is 
problematic especially for small firms and freelancers (see Leis
tert 2013 on the example of current policies adopted by Adobe).

Architecture of the Cloud

Quite different from promoting subscription under the guise of 
a “service” is the idea to provide the functionality of software 
applications in terms of web services: Instead of deploying a 
copy of software to be installed and run on the customer’s site, 
the vendor hosts the software on his own servers and provides 
access via the Internet. This business model is highly dependent 
on technical factors such as network and server performance 
and thus leads to the more recent paradigm of cloud computing. 
According to the definition provided by the U.S. Department 
of Commerce’s National Institute of Standards and Technology 



30 (NIST), cloud computing comprises three levels of services (Mell 
and Grance 2011): Infrastructure as a Service (IaaS) refers to the 
provision of computing resources (processing, storage, networks) 
that can be configured like onsite hardware and used by the 
customer to “run arbitrary software, which can include operating 
systems and applications” (3). The underlying virtual machinery is 
in turn running on a distributed cloud infrastructure with pooled 
resources. The model Platform as a Service (PaaS) refers to vir
tual development environments that already include operating 
systems together with “programming languages, libraries, 
services, and tools supported by the provider” (2f.). SaaS, finally, 
represents the highest integration level of cloud computing. 
The customer here uses the functionality of services without 
managing any infrastructure on the levels of operating systems, 
development environments, or application software (cf. Gajbhiye 
and Shrivastva 2014; Crago and Walters 2015). 

Technically, the implementation of SaaS conforms to the frame
work of Serviceoriented Architecture (Laplante, Zhang and Voas 
2008). SOA extends the logic of object-oriented programming 
to commercial services, turning from algorithms and control 
structures to software components that are defined in terms of 
specific properties, functions, and interfaces; these components 
shall interact without central control in the context of distrib
uted software systems. A web shop, for example, may invoke 
a number of services offered by different vendors, including 
database management, payment services, and logistical services, 
each in turn drawing on a number of subordinate services such 
as processing web forms, recommendation systems, or tracking 
options. These components are only loosely coupled, i.e. during 
an individual process, services are invoked on demand, their 
discovery, selection and binding being accomplished “on the fly” 
in a nonpredictable way (cf. Turner, Budgen, and Brereton 2003; 
Gold et al. 2004). Activities in this context are no longer con
ceived as traditional programming; central process metaphors 



31instead refer to aesthetic practices in the domains of music and 
dance—“composition,” “choreography,” and “orchestration.”

In economic terms, SOA and SaaS neatly integrate with the man
agement of business processes. The composition of services 
is accomplished by specific software tools such as the Business 
Process Modeling Language (BPML), an XMLbased standard which 
is supposed to provide an efficient translation between economic 
and computational workflow. BPML was later succeeded by the 
Business Process Execution Language for Web Services (WSBPEL), 
developed mainly by IBM and Microsoft and elevated to an 
industry standard by the OASIS consortium (Organization for the 
Advancement of Structured Information Standards) (cf. Turner, 
Budgen, and Brereton 2003; Candan et al. 2009). In this context, 
software has not only ceased to be a product, it also no longer 
represents a tool employed to accomplish specific business tasks: 
rather, both domains seem to converge in fulfillment of the old 
cybernetic dream that business itself becomes a matter of pure 
programming (i.e. music and dance).

Hidden Environments

The historical sketch provided so far might contribute to our 
understanding of the current service orientation in several ways: 
First of all, it becomes evident that the boundaries between hard
ware, software, and services, as well as the relations between 
the three domains, are fluid and subject to permanent his
torical change in conceptual, technological, and economic terms. 
Second, while hardware on the one hand and services on the 
other, fit into the classical definition of economic goods and rep
resent fairly stable concepts, the status of software has always 
been problematic. Since its value depends on configuration, cus
tomization, maintenance, and training, software remains closely 
coupled to services. The emancipation of the shrinkwrapped 
box seems to represent a transitional phase, and even in the 
consumer market, complex and costly applications are replaced 



32 today by cheap apps that in many cases function as interfaces 
to remote services. Third, in economic terms, there is no clear
cut distinction between products and services, which rather 
represent the endpoints of a continuum. Different business 
models may rely on different strategies to “servitize” products 
or to “productize” services (Cusumano 2008, 26). Taken together, 
there seem to be no simple linear trends, but circular or other 
dynamics that govern the relations between hardware, software, 
and services, on micro as well as on macroeconomic levels (cf. 
Cusumano 2003, 2008; Suarez, Cusumano, and Kahl 2013). Thus, 
the present boom of software and computer infrastructure as 
services can be regarded as a renaissance of essential aspects of 
the hardware and services computing economy of the 1950s and 
1960s.

After all, there is no software. Kittler’s speculative and hyperbolic 
dictum, formulated in the heyday of packaged bit boxes, was 
obviously inspired by personal experience with personal 
computers running Microsoft operating systems. But it was 
meant more generally, pointing to an inevitable strategic delusion 
rendering invisible the politics and power relations inscribed in 
hardware. Today, hardware and software retreat from the focus 
of “user experience” and are supposed to become part of the 
environment—the “cloud” as a kind of encompassing atmos
pheric metaphor, or smaller spheres such as the city, the home, 
clothes, or the human body. Before Mark Weiser formulated 
the agenda of Ubiquitous Computing, the late Marshall McLuhan 
emphasized the environmental logic of media, drawing on the 
example of the motor car. McLuhan claimed that the medium is 
not the vehicle, but the infrastructure, which he further described 
as a “hidden environment of services” (McLuhan 2005, 242). Thus 
from the beginning, the concept of “service” links the economy 
to an ecology of media—a managed ecology, however, of the 
cybernetic type, which is tuned towards operational closure 
and blackboxing. In particular, while software promises flexible 
control over hardware in terms of algorithms, services stand 



33for the possibility of flexible control over algorithms in terms 
of functions. While software encapsulates hardware, services 
encapsulate both hard and software. In the era of services, both 
hardware and software are running in protected mode.

Coding Services

So what are the real political and ecological conditions of infra
structures? What are the material and energetic resources of the 
cloud, how are they managed, where, and by whom? How are 
working conditions in software industries transformed by the 
service paradigm? As a case in point, we might consider methods 
such as Extreme Programming (XP) or Agile Programming (AP) 
(Beck 1999; Beck et al. 2001) that are historically and system
atically linked to SOA and cloud computing (Guha and AlDabass 
2010; Baliyan and Kumar 2014). Following the requirement of 
high responsiveness to changing demands, traditional devel
opment and production cycles are given up in favor of a general 
acceleration of workflow. The “agile” paradigm departs from 
central principles of structured programming and the factory 
model of software production, considering thorough planning 
and extensive documentation as harmful. The “Agile Manifesto” 
and related commentaries (Beck et al. 2001) read as a peculiar 
combination of working methods with moral values, yielding a 
work ethic tuned towards efficiency, productivity, and customer 
satisfaction. While emphasizing categories such as “individuality,” 
“freedom,” and “respect,” many of the recommended principles 
and methods are in fact reminiscent of the theory of “egoless 
programming” formulated in the late 1960s by Gerald Weinberg 
(Weinberg 1971, 47ff.; cf. Ensmenger 2010, 212–217).

For example, in smaller projects, all team members should be 
present in the same room, maintain permanent communication, 
and practice selfmonitoring and mutual correction, which is 
encouraged especially by pair programming in XP. Tasks and 
roles are flexibly assigned and supposed to change, team 



34 members are brought into direct contact with customers in 
order to react immediately to their feedback. Programmers 
are not rewarded for individual skills and competences, but for 
personal involvement. Work is accomplished by the team as a 
collective subject. Hierarchies are as flat as possible, central con
trol should be avoided. Thus, in many respects, agile and related 
programs amount to a convergence of coding technologies and 
technologies of the self (cf. Neubert 2016). And obviously, the 
economic ideas of choreography, objectoriented programming, 
neat cycles, binding on the fly, and flexible work flow, return 
on the level of programming practices. Like other parts of the 
service infrastructure, human programmers belong to a pool 
of resources that are disposable and responsive on demand. 
In agile methods, the cloud becomes selfreferential. Not by 
coincidence, Human Capital Management (HCM) is one of the most 
profitable services. While structured programming was linked to 
a Taylorization of software engineering (Mahoney 2004), “agile” 
programming and related approaches represent a next step 
towards neoliberal, perhaps even postliberal methods of coding 
subjects.

After all, there surely is a lot of software. So we might have to 
adjust Kittler’s heuristics: There are no services.

Bibliography

Anthes, Gary H. 1989. “Rearview Mirror.” Computerworld, March 2: 63–65.
Arnst, Catherine. 1977. “Bundled Pricing Illegal, 1968 IBM Memo Admits.” 

Computerworld 11 (48), November 28: 1, 4.
Auerbach. 1973. Auerbach Guide to Time Sharing. Philadelphia, PA: Auerbach 

Publishers.
Baliyan, Niyati, and Sandeep Kumar. 2014: “Towards Software Engineering Paradigm 

for Software as a Service.” IC3, 2014 Seventh International Conference on Con-
temporary Computing (IC3): 329–333.

Beck, Kent. 1999. Extreme Programming Explained: Embrace Change. Reading, MA: 
AddisonWesley.

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, 
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon 



35Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, 
and Dave Thomas. 2001. “Manifesto for Agile Software Development.” agileman-
ifesto.org. Accessed April 1, 2015. http://agilemanifesto.org/.

Bender, David. 1968. “Computer Programs: Should They Be Patentable?” Columbia 
Law Review 68 (2): 241–259.

Brown, Walter. 2002. “Founding Atlantic Software.” IEEE Annals of the History of 
Computing 24 (1): 80–82.

CampbellKelly, Martin. 2001. “Not Only Microsoft: The Maturing of the Personal 
Computer Software Industry, 1982–1995.” The Business History Review 75 (1) 
(Computers and Communications Networks): 103–145.

CampbellKelly, Martin, and Daniel D. GarciaSwartz. 2007. “From Products to 
Services: The Software Industry in the Internet Era.” The Business History Review 
81 (4): 735–764.

Candan, K. Selcuk, WenSyan Li, Thomas Phan, and Minqi Zhou. 2009. “Frontiers in 
Information and Software as Services.” IEEE 29th International Conference on Data 
Engineering (ICDE): 1761–1768.

Ceruzzi, Paul E. 2003. A History of Modern Computing. 2nd Edition. Cambridge, MA; 
London: The MIT Press. 

Crago, Stephen P., and John Paul Walters. 2015. “Heterogeneous Cloud Computing: 
The Way Forward.” Computer 48 (1): 59–61.

Cusumano, Michael A. 2003. “Finding Your Balance in the Products and Services 
Debate.” Communications of the ACM 46 (3): 15–17.

Cusumano, Michael A. 2008. “The Changing Software Business: Moving from 
Products to Services.” Computer 41 (1): 20–27.

Cybermatics. 1971. "Tin Canned Software." Advertising. © Cybermatics Inc. 
Computerworld 5 (46), November 17, 1971: 39.

Ensmenger, Nathan. 2010. The Computer Boys Take Over. Computers, Programmers, 
and the Politics of Technical Expertise. Cambridge, MA; London: MIT Press.

Gajbhiye, Amit, and Krishna M. Shrivastva. 2014. “Cloud computing: Need, Enabling 
Technology, Architecture, Advantages and Challenges.” Confluence. The Next 
Generation Information Technology Summit. 5th International Conference 25-26 Sept. 
2014: 1–7. 

Gibson, Stanley. 1989. “Software industry born with IBM’s unbundling.” 
Computerworld 23 (25), June 19: 6.

Goetz, Martin. 2002a. “Memoirs of a Software Pioneer: Part 1.” IEEE Annals of the His-
tory of Computing 24 (1): 43–56.

Goetz, Martin. 2002b. “Memoirs of a Software Pioneer: Part 2.” IEEE Annals of the His-
tory of Computing 24 (4): 14–31.

Gold, Nicolas, Andrew Mohan, Claire Knight, and Malcolm Munro. 2004. “Under
standing ServiceOriented Software.” Software, IEEE 21 (2): 71–77.

Grad, Burton. 2002. “A Personal Recollection: IBM’s Unbundling of Software and 
Services.” IEEE Annals of the History of Computing 24 (1): 64–71.

Guha, Radha, and David AlDabass. 2010. “Impact of Web 2.0 and Cloud Computing 
Platform on Software Engineering.” International Symposium on Electronic System 
Design ISDE 2010: 213–218. 



36 Haigh, Thomas. 2002. “Software in the 1960s as Concept, Service, and Product.” IEEE 
Annals of the History of Computing 24 (1): 5–13.

Head, Robert V. 2002. “The travails of Software Resources.” IEEE Annals of the History 
of Computing 24 (1): 82–85.

Hein, Bettina. 2007. 0+0=1: The Appliance Model of Selling Software Bundled with Hard-
ware. Master Thesis, Massachusetts Institute of Technology.

Humphrey, Watts S. 2002. “Software Unbundling: A Personal Perspective.” IEEE 
Annals of the History of Computing 24 (1): 59–63.

Johnson, Bob. 1982. “Justice Department Decides IBM Case ‘Without Merit ’.” 
Computerworld 26 (3), January 18: 1, 8.

Johnson, Luanne. 2002. “Creating the Software Industry: Recollections of Software 
Company Founders of the 1960s.” IEEE Annals of the History of Computing 24 (1): 
14–42.

Kirchner, Jake. 1982. “Bigness not Bad, Baxter Explains.” Computerworld 26 (3), 
January 18: 1, 8.

Kittler, Friedrich. 1992. “There is no Software.” Stanford Literature Review 9 (1): 81–90.
Kittler, Friedrich. 1993. “Es gibt keine Software.” In Writing/écriture/Schrift, edited by 

Hans Ulrich Gumbrecht. München: Fink.
Kittler, Friedrich. 2014.”Protected Mode.” In Kittler, The Truth of the Technological 

World: Essays on the Genealogy of Presence. Translated by Erik Butler, 209–218. 
Stanford, CA: Stanford University Press.

Laplante, Phillip A., Jia Zhang, and Jeffrey Voas. 2008. “What’s in a Name? Dis
tinguishing between SaaS and SOA.” IT Professional 10 (3): 46–50.

Leistert, Oliver. 2013. “Mietmodell Software Adobe.” Pop. Kultur & Kritik 3: 39–42.
McLuhan, Marshall. 2005 [1974]. “Living at the Speed of Light.” In Marshall McLuhan. 

Understanding Me. Lectures and Interviews, edited by Stephanie McLuhan and 
David Staines, 225–243. Cambridge, MA: MIT Press.

Mahoney, Michael Sean. 2004. “Finding a History for Software Engineering.” IEEE 
Annals of the History of Computing 26 (1): 8–19.

Mell, Peter, and Timothy Grance. 2011. The NIST Definition of Cloud Computing: Rec-
ommendations of the National Institute of Standards and Technology. U.S. Depart
ment of Commerce. NIST Special Publication 800–145.

Neubert, Christoph. 2016. “Software/Architektur. Zum Design digitaler 
Dienstbarkeit.” In Dienstbarkeitsarchitekturen. Vom Service-Korridor zur Ambient 
Intelligence, edited by Markus Krajewski. Tübingen: Wasmuth. (forthcoming)

Niquette, Paul. 2006. “Softword: Provenance for the Word Software.” niquette.com. 
Accessed April 1, 2015. http://www.niquette.com/books/softword/tocsoft.html.

OED. S.v. “software, n.” Oxford English Dictionary Online. http://www.oed.com/view/
Entry/183938.

Olsen, Eric R. 2006. “Transitioning to Software as a Service: Realigning Software 
Engineering Practices with the New Business Model.” Service Operations and 
Logistics, and Informatics. SOLI ‘06. IEEE International Conference, 21-23 June 2006: 
266–271.

Shapiro, Fred A. 2000. “Origin of the Term Software: Evidence from the JSTOR Elec
tronic Journal Archive.” IEEE Annals of the History of Computing 22 (2): 69–71.



37Suarez, Fernando F., Michael A. Cusumano, and Steven J. Kahl. 2013. “Services and 
the Business Models of Product Firms: An Empirical Analysis of the Software 
Industry.” Management Science 59 (2): 420–435.

Turner, Mark, David Budgen, and Pearl Brereton. 2003. “Turning Software into a 
Service” Computer 36 (10): 38–44.

Weinberg, Gerald. 1971. The Psychology of Computer Programming. New York, NY: Van 
Nostrand Reinhold.

Welke, Lawrence. 2002. “Founding the ICP Directories.” IEEE Annals of the History of 
Computing 24 (1): 85–89.




