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Specification of Morphological Models with L-Systems 
and Relational Growth Grammars 

Abstract 

Among the techniques for the creation of photorealistic virtual 

organisms, particularly plants, and in scientific models of vege-

tation structure, rule-based specifications (formal grammars) 

play a prominent role. Lindenmayer systems (L-systems) are 

the most widespread formalism of this sort, but certain types of 

graph grammars, combined with standard object-oriented pro-

gramming, offer even more possibilities to specify rule-driven 

developments of 3-dimensional arrangements, morphology of 

virtual organisms and underlying processes like, e.g., meta-

bolic reactions. Examples of grammar rules and the virtual 

geometrical structures generated from them, all realizable with 

the open-source software GroIMP (www.grogra.de), are 

shown. This grammar-based approach is often not immediately 

used for the direct specification of a picture as a pattern of 

graphical elements in a plane, but for virtual 3-D scenes, which 

are then rendered visible using standard techniques of geome-

try-based computer graphics. 
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1 Introduction: Rule-based modelling of development  

The programme for a computer-based simulation of a process is often specified by writing 

down the elementary steps of calculation in a prescribed order, which is to be applied 

when the machine executes them. This order can include the use of conditional branching 

and loops. Furthermore, in this classical programming style, commands have usually the 

meaning that the state of the machine – manifested, e.g., in the values of some memory 

cells – is changed in a predefined manner. This programming paradigm is called “impera-

tive” or “von Neumann programming”, and can be very useful in technical calculations or 

for simulations in physics.  

However, when living organisms and the development of their morphological structure are 

to be modelled, another sort of programming seems to be more natural. Let us consider, 

for instance, a growing tree: All parts of the organism coexist, and the young shoots of the 
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tree grow all in parallel, often according to the same pattern. An intuitive way to specify this 

behaviour is to list a number of rules for growth of single buds and shoots (or whatever or-

gans are considered as the basic constituents), and to let the computer apply them in par-

allel to all tree organs, wherever they are applicable. When the growth flush of the next 

year is to be simulated, the application of these rules is to be iterated. Here, the order in 

which the rules of growth are written down is not important: The computer is expected to 

pick those rules which are applicable in a given situation, and to use them regardless of 

their position in a list. This “rule-based” programming paradigm is well known in other 

branches of information science: Grammars of natural languages and of programming lan-

guages are used in a similar manner, with the aim to deduce all correctly formed sen-

tences. Another example is the programming language PROLOG, where logical rules are 

applied to generate automatic proofs of statements. In all these cases, some structure – a 

botanical tree / a sentence / a logical formula – is transformed or rewritten by the applica-

tion of rules. The systems of rules, or grammars, are therefore also called “rewriting sys-

tems”. Rule-based programming can be a more intuitive way to specify models of natural 

phenomena, because we do not need to bother about a specific order of execution of 

commands. The rules work at a higher level of abstraction.  

The biologist Aristid Lindenmayer invented in 1968 a special sort of grammar, later called 

L-system, to describe the growth of arrangements of plant cells [Lindenmayer 1968]. At 

that time, the notion of formal grammar, developed by Noam Chomsky for natural lan-

guages, was already known. However, in a Chomsky grammar, normally only one rule is 

applied in each deduction step. In contrast, L-systems work in a parallel manner, thus re-

flecting the parallelism of growth in plants: That means, in every time step all constituents 

of the virtual plant where some rule is applicable are transformed according to that rule. (If 

there are some objects on which no rule can be applied, it is assumed that these objects 

are just resting: They remain unchanged.)  

Later on, Lindenmayer’s formalism, which is basically a string-rewriting mechanism, was 

extended.1 A command language for a geometrical interpretation of strings was introduced 

to give a precise definition of the morphological meaning of the structures obtained from L-

system application. We will briefly introduce this “Turtle Geometry” in Chapter 2. In Chap-

ter 3, L-systems will be exactly defined, and we will see some simple examples. Several 

extensions of the original concept were used to solve various problems in the modelling of 

plant growth and architecture; some of these extensions will be explained and demon-

strated in Chapter 4. An important generalization, which is currently still in the focus of re-

search, is introduced in Chapter 5: “Relational Growth Grammars” (RGG), a variant of 

graph rewriting systems. These grammars overcome some of the limitations of L-systems 

and can be used to connect different levels of the organization of plants in a unifying 

                                                 
1
 see [Prusinkiewicz & Lindenmayer 1990] for references and historical remarks. 
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model framework: Genetic processes influencing metabolism, metabolic reaction networks 

influencing macroscopic growth and morphogenesis. Simulation models based on this sort 

of grammar representation can not only produce even more realistic images of plants and 

plant communities, but will also aid the biologists in checking hypotheses and designing 

new experiments. A discussion of possible future trends in modelling morphological phe-

nomena and of the relation of the rule-based programming paradigm to picture morphol-

ogy will close the article.  

2 Turtle geometry  

To establish a connection between the language of character strings and the language of 

geometrical forms, a simple alphabet of commands, each with a geometrical meaning, is 

defined. Using these commands, we build programmes in a strictly imperative manner, 

which are interpreted by a virtual drawing device, called the “turtle” [Abelson & diSessa 

1982]. The turtle is equipped with a simple memory containing information about the length 

s of the next line to be drawn, its thickness d, its colour c, the turtle’s current position on 

the plane, its current direction of moving, etc. Among the possible commands are:  

M0 move forward by length s (without drawing) 

F0 move forward and draw simultaneously a line of length s 

M(a) move forward by length a (without drawing); the explicitly specified 

number a overrides the turtle’s inherent s 

F(a) move forward and draw simultaneously a line of length a 

L(a) overwrite s by the value a 

D(a) overwrite d by the value a 

P(a) overwrite c by the value a (interpreted as a colour index) 

RU(a) rotate clockwise by the angle a (around the “up” axis, which is per-

pendicular to the plane where the turtle is moving) 
Sphere(a) produce a filled circle with radius a around the current position without 

moving 

The zero in M0 and F0 means that there is no explicit argument; instead, the memorized 

“state variable” s of the turtle is used. Strings composed of 

these commands can be used to specify structures made of 

consecutive lines with changing length, thickness, and visibil-

ity. Each such string describes a static geometrical structure. 

E.g., the string  

L(100) D(3) RU(-90) F(50) RU(90) M0 

RU(90) D(10) F0 F0 D(3) RU(90) F0 F0 

RU(90) F(150) RU(90) F(140) RU(90) M(30) 

F(30) M(30) F(30) RU(120) M0 Sphere(15)  

describes the structure in Figure 1.  

 
Figure 1: The result of a 
simple turtle command 

sequence (see text) 
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As in other imperative programming languages, loops can be used to abbreviate iterated 

parts of the string: for (i:(1:n))(X ) generates n replications of the string X. Hence, 

the turtle command programme  

   L(100) for (i:(1:30)) 

    ( for (j:(1:i)) (F0) RU(90) 

      for (j:(1:i)) (F0) RU(90) ) 

generates the spiral in Figure 2a, and 

   L(100) for ((1:20)) 

    ( for ((1:36)) ( F0 RU(165) F0 RU(165) ) RU(270) ) 

generates the pattern in Figure 2b.  

To overcome the restriction to strictly linear forms, the possibility of branching is introduced 

by the special turtle commands “[“ and “]”: When the turtle encounters “[“, its current state 

(including the values of s, d, c etc.) is stored on a stack. The following string can be seen 

as a branch which ends when “]” is encountered: Then the stored state is taken from the 

stack and replaces the turtle state which was obtained during the drawing of the branch. 

This means that the turtle “jumps back” to its old position and resumes its operation as if 

the construction of the branch since “[“ would not have taken place. Figure 3 shows the 

turtle interpretation of the following string:  

F(50) [ RU(60) P(4) F(20) ] RU(-30) F(50) .  

After the vertical segment of length 50, the smaller, red branch to the right (coloured ac-

cording to the command P(4)) is constructed. After the closed bracket, the turtle resumes 

its old position and follows the commands RU(-30) F(50) to draw the upper-left part of 

the structure.  

  

a b 

Figure 2: (a) A spiral specified by a simple iterative turtle programme, (b) the result of 
another iterative turtle programme (after [Goel & Rozehnal 1991]) 
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The turtle can also be guided to draw structures in three dimensions. For this purpose, two 

further rotation commands are introduced: RL(a) and RH(a), which rotate the turtle 

around an axis pointing (initially) to the left, respectively around its current head direction.2  

3 L-Systems  

Lindenmayer systems (L-systems) are parallel rewriting systems on strings. Mathemati-

cally, a “pure” L-system (without geometrical interpretation) consists of 3 components: an 

alphabet Σ which contains the basic symbols that are to be used to build strings, a start 

string called “Axiom”, and a finite set of rules, each of which having the form  

symbol ==> string of symbols;  

and the symbols are taken from Σ here. In a deterministic L-system, the symbol on the left-

hand side (l.h.s.) of each rule must be different from those of all other rules. An application 

step of the L-system to a given string s consists of the simultaneous replacement of all 

symbols in s occurring as a l.h.s. of a rule by their corresponding right-hand side (r.h.s.), 

whereas symbols which cannot be replaced with the help of a rule remain unchanged. By 

starting with the start string of the L-system and iteratively performing one application step 

to the result of the preceding one, we obtain the developmental sequencea of strings gen-

erated by an L-system:  

Axiom → s1 → s2 → s3 → ...  

For example, let us consider the L-system with the alphabet Σ = { A; B }, Axiom = A, and 

with the two rules  

A ==> B  

B ==> AB.  

The resulting developmental sequence is  

                                                 
2
 See the tutorial included in the GroIMP software, freely available under www.grogra.de, for further details 

about turtle commands. 

 

Figure 3: A branched structure (see text) 
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A → B → AB → BAB → ABBAB → BABABBAB → ...  

Following Lindenmayer’s original intentions, A and B can be interpreted as two different 

cell types of filamentous organisms (e.g., algae). The rules say that a cell of type A can 

grow into a cell of type B, and a type B cell can divide into two cells of type A and B, re-

spectively. The developmental sequence then reflects the growth of the filament of cells in 

discrete time steps. (Note that the number of cells generated in this sequence grows ac-

cording to the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, ..., where each number is the sum 

of its two predecessors.)  

To produce more interesting structures from L-systems than just linear filaments of cells, 

Alvy Ray Smith [Smith 1984] and later Prusinkiewicz and Lindenmayer [1990] added turtle 

geometry as a fourth component to Σ, Axiom and the rule set. Turtle geometry serves as a 

geometrical interpretation, i.e., as a means to associate with each string (particularly with 

each si from the developmental sequence above) a geometrical structure Si in 2- or 3-

dimensional space. This is accomplished by letting the alphabet Σ contain the set T of all 

turtle commands. The turtle then separately interprets the strings si obtained from the L-

system, i.e., they are scanned from left to right, and the geometrical structure Si is con-

structed by following the occurring commands. Symbols from Σ that are not in T are simply 

ignored by the turtle. Hence we have the following scheme of interpreted L-system ap-

plication:  

 

Here, the dotted green arrows stand for the turtle interpretation process.  

The first example (after [Prusinkiewicz & Hanan 1989, p. 25]) will demonstrate this mecha-

nism: Let the rules of our L-system be  

Axiom ==> L(100) F0 and  

F0 ==> F0 [ RU(25.7) F0 ] F0 [ RU(-25.7) F0 ] F0 .  

Figure 4 shows the resulting structures S1, S2, S3 and S4.  
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The next two examples use L-systems to generate plane-filling curves. Both make use of 

the possibility, given in the programming language XL [Kniemeyer 2007], to let symbols (in 

this context called “modules”) inherit properties from other symbols. Such an inheritance 

from A to B is expressed in the form  

module B extends A;  

and this is a formalism typical for object-oriented programming. Its purpose in the following 

examples is simply the abbreviation of commands.  

A so-called hexagonal Gosper curve is derived from  

module A extends F0; 

module B extends F0; 

module C extends RU(60); 

module D extends RU(-60); 

Axiom ==> L(100) A; 

A ==> A C B C C B D A D D A A D B C; 

B ==> D A C B B C C B C A D D A D B; 

with the result after 4 steps shown in Figure 5a (after [Prusinkiewicz & Hanan 1989, p. 

19]), and the second curve resembles a traditional Indian kolam pattern (see Figure 5b 

and [Ascher 2003]), called “Anklets of Krishna” (after [Prusinkiewicz & Hanan 1989, p. 

73]), and is derived from  

 

Figure 4: A developmental sequence of branching structures in the 
plane, generated by a simple L-system (see text) 
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module R extends RU(-45); 

module A extends F(10); 

Axiom ==> L(100) R X R A R X; 

X ==> X F0 X R A R X F0 X;  . 

4 Extensions of the L-system concept  

4.1  Stochastic L-systems  

Geometrical structures produced by the simple forms of L-systems that we have presented 

so far show a high degree of regularity. In real-world patterns, however, we have often 

variability and “noise”, producing deviations from strict regularity. A first attempt to reflect 

this “noise” in a model is the inclusion of randomness. The computer can generate 

pseudo-random numbers, appearing as if they do not follow any predictable pattern, and 

this form of irregularity can be introduced in rewriting systems – either by directly using 

pseudo-random numbers as parameters (e.g., of L or RU commands) or by making rule 

application depend on some “oracle” driven by pseudo-random numbers. For example, let 

us consider the deterministic L-system  

float c = 0.7;  

Axiom ==> L(100) D(5) A;  

A ==> F0 LMul(c) DMul(c) [ RU(50) A ] [ RU(-10) A ].  

(Here, “float” declares a floating-point variable c which gets the value 0.7 and is used in 

the second rule; “LMul(c)” multiplies the current length s of the turtle steps with this 

number, and “DMul(c)” analogously for current thickness d.) The tree-like structure pro-

duced by this L-system looks very regular (Fig. 6a).  

If we exchange the second rule by  

A ==> F0 LMul(c) DMul(c) 

      if (probabiliy(0.5)) ( [ RU(50) A ] [ RU(-10) A ] ) 

      else ( [ RU(-50) A ] [ RU(10) A ] ); 

  

a b 

Figure 5: Two plane-filling curves obtained from L-systems, see text 
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the orientation of the two branches, specified by the “RU” commands, is switched (or not) 

in an arbitrary manner in each new bifurcation of the tree. Each of the two orientations is 

chosen with equal probability 0.5, as if the outcome would depend on coin-tossing, and the 

resulting structure has already a somewhat more natural look (Fig. 6b).  

Of course, it would be possible to increase the irregularity even further, e.g., by replacing 

the constant c above by “random(0.3, 1)”, a function call which gives back pseudo-

random numbers with uniform distribution between 0.3 and 1. Using the same formalism, it 

is also easily possible to simulate random walks in the plane or in space (e.g., Brownian 

motion in physics), or to generate more-or-less-controlled random distributions of small ob-

jects in an area – what is called a “point process” in geostatistics.  

A very simple example is given by the following L-system, consisting of only one rule:  

Axiom ==> D(0.5) for ((1:300)) 

          ( [ Translate(random(0, 100), random(0, 100), 0) 

              F(random(5, 30)) ] ); 

that generates 300 vertical lines with random lengths between 5 and 30 units at random 

positions on a 100 x 100 square field (Fig. 7). Here, the command “Translate” works like 

“M”, but the direction of the translation is given in absolute coordinates (x, y, z), not as a 

multiple of the current turtle head vector.  

4.2 Parametric L-systems  

We have already used parameters with numerical values in turtle commands like L, LMul, 

D or F in the examples above. If we permit the use of such parameters in connection with 

other symbols, too, the capacity of our rewriting mechanism to perform calculations of all 

kinds is greatly enhanced. For example, in the next L-system, which produces a fractal 

  

a b 

Figure 6: Tree-like structures generated from an L-system 
(a) deterministic version, (b) stochastic version 
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structure resembling a fern leaf (Fig. 8a), we use two integer parameters t and k for the 

symbol A. The symbol A stands for something like a bud here, and the first parameter, t, is 

a time delay: t is counted down, and a certain number of steps (here 6) must pass before a 

lateral branch starts growing. The second parameter, k, has only the values +1 or –1 and 

controls the orientation of the branch, similar to the tree example above, but not changing 

at random: k is systematically alternating between –1 and +1.  

module A(int t, int k); 

Axiom ==> L(100) A(0, 1); 

A(t, k) ==>  

         if (t > 0) ( A(t-1, k) ) 

         else 

         ( F(1) [ RU(k*45) A(6, k) ] F(1) RU(3) A(0, -k) ); 

F(x) ==> F(1.15*x) 

L-systems like this one naturally challenge the plant designer to explore their potential by 

playing around with parameters: E.g., if one reduces the initial delay in the branches from 

6 to 2, branches will emerge earlier and a more compact form of the structure will result 

(Fig. 8b).  

4.3 Interpretive rules  

A very useful extension of the L-system formalism is an extra type of rules which are ap-

plied in a different manner: Whereas the “normal” L-system rules (also called generative 

rules) are iteratively applied to a string in order to obtain descriptions of new developmen-

tal stages, the so-called interpretive rules are applied only as a pre-processing for geomet-

 

a b 

Figure 7: A random pattern of vertical lines on a quadratic area 
(a) view from above, (b) slanted view 
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rical interpretation, and their application has no influence on the formation of the next de-

velopmental step:  

In this diagram, the blue hollow vertical arrows represent the application of the interpretive 

rules, and dotted vertical arrows stand for the subsequent interpretation by the turtle. Par-

ticularly, the specification of graphical details of certain objects or organs, which are repre-

sented in the strings s1, s2, ... as a single symbol, can be given by an interpretive rule with 

this symbol as its left-hand side.3 For example, in the following L-system the symbol A is 

copied 8-fold and shifted in the plane by a generative rule which is iteratively applied, 

whereas the interpretive rule transforms this A into a quadratic box. Both types of rules 

have to be separated in different “blocks” named run and interpret, and a command 

                                                 
3
 In the literature, interpretive rules were sometimes also called “homomorphisms”, but this is a misleading 

naming, because the usual, generative rules can mathematically also be seen as homomorphisms of a so-
called free monoid; see, e.g., [Vitányi 1976]. 

 

a b 

Figure 8: (a) Fern leaf produced by a parametric L-system (see text); (b) vari-
ant with reduced delay parameter for branch emergence 
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“applyInterpretation” has to be given in order to apply the interpretive rules in the 

right moment:  

 
public void run() 

{ 

   [ 

   Axiom ==> A; 

   A ==> Scale(0.3333) for (i:(-1:1)) 

                         for (j:(-1:1)) 

                           if ((i+1)*(j+1) != 1) 

                             ( [ Translate(i, j, 0) A ] ); 

   ] 

   applyInterpretation(); 

} 
 

public void interpret() 

   [ 

   A ==> Box; 

   ] 

The resulting pattern after 5 steps, approximating a so-called Menger sponge fractal, is 

shown in Figure 9a. The “Scale” command enforces a shrinking in every developmental 

step, to compensate for the 3-fold length of the result of copying.  

If we now replace the interpretive rule by  

A ==> Sphere(0.5);  

we get after 4 steps the result depicted in Fig. 9b. With the number of steps approaching 

infinity, the limit set will be the same fractal as in the first version. The same holds for the 

variant with  

A ==> Box(0.1, 0.5, 0.1) Translate(0.1, 0.25, 0) Sphere(0.2);  

which defines an arrangement of a flat box and a smaller sphere as initial configuration; 

the result after 3 steps is shown in Fig. 9c.  

The right-hand side of an interpretive rule must not necessarily contain a command gener-

ating a geometrical body, like Box, Sphere or F (the latter making a cylinder). The following 

   

a b c 

Figure 9: Different approximations of the Menger sponge fractal, obtained with differ-
ent interpretive rules for the symbol A (see text) 
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example system, with an RU command on the r.h.s. of an interpretive rule, simulates a 

clock, with the correct ratio of revolvements of little and big hand (the hands modelled by F 

commands):  

public void run() 

{ 

   [ 

   Axiom ==> [ A(0, 0.5) D(0.7) F(60) ] A(0, 6) F(100); 

   A(t, speed) ==> A(t+1, speed); 

   ] 

   applyInterpretation(); 

} 

public void interpret() 

   [ 

   A(t, speed) ==> RU(speed*t); 

   ] 

Interpretive rules considerably enhance the expressive possibilities of graphically-

interpreted L-systems.  

Using L-systems with the extensions introduced so far, it is already possible to create quite 

realistic-looking pictures of plants or twigs (Figs. 10, 11). Both models shown here are 

based on botanical observations and measurements and use only F commands for their 

  

a b 

Figure 10: Model of a beech twig (left: in winter, right: in summer with the 
buds grown to leaves) based on an L-system; from [Kurth 1999] 
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geometrical elements, which are in fact arranged in a virtual 3-D space (shown is only a 

parallel projection to a plane).  

Although the trees from Figure 11 lack any surface details, colours or lighting and consist 

only of cylindrical elements, their patterns of branching are quite faithful to nature and al-

low their usage in simulation models of physical processes, e.g., water transport or distri-

bution of sunlight in the canopy. Exemplarily, Figure 12 shows the resulting water potential 

profiles along selected branches in the crown of the virtual spruce tree shown on the left, 

  

 
Figure 11: L-system-based model of spruce (Picea abies) trees from the Solling mountains  

Left picture: 3 representatives of tree classes (dominant, median, suppressed),  
right: zoom into two of the trees; from [Kurth 1999] 

 

Figure 12: Virtual water potential profiles (left side) along selected branches of the virtual 
spruce tree (right side), obtained with the software tools Grogra and Hydra (from [Früh & 

Kurth 1999]). 
Each line in the diagramme corresponds to a path from the tree base to a selected branch tip 
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when a flow simulation model based on differential equations is applied on the tree axes 

with their capacities and resistances [Früh & Kurth 1999].  

On the other hand, when the geometrical elements of the virtual plants are rendered using 

standard computer-graphics techniques, the trees can be copied and arranged in visual-

ized virtual landscapes like in Figure 13. Here, an interface programme taking terrain data 

from a GIS (Geographical Information System) and an additional algorithm for the creation 

of realistic planting patterns of trees were used; see [Knauft 2000].  

4.4 Context-sensitivity  

All the L-systems shown above allow only a flow of information from the predecessor (in a 

rule) of a symbol to the symbol itself (“lineage control”). However, in nature we have often 

the situation that growth or development of an organ is influenced by some information 

(signals, energy flow, substances) coming from other parts of the existing structure. If we 

assume that this information comes from the neighbourhood (in a topological sense) of the 

organ under consideration, it is possible to model such influences by context-sensitive L-

systems: Applicability of a rule is restricted to the cases when a certain predefined context 

surrounds the symbol given on the left-hand side of the rule. This context is again speci-

fied by symbols, which must be present to the left or to the right of the given symbol in the 

string representation of the generated structure.4 Using this formalism, the transport of a 

signal or of a substance through a growing or static structure can be simulated. Let us 

consider the following L-system:  

1   module A(int age); 

2   module B(super.length, super.color) extends F(length, 3, color); 

3   Axiom ==> A(0); 

4   A(t), (t < 5) ==> B(10, 2) A(t+1); 

5   A(t), (t == 5) ==> B(10, 4); 

                                                 
4
 To be precise, we allow several neighbours to the right in the case of branching: The basic element of each 

branch emerging in x is considered as a neighbour of x. Furthermore, we permit the skipping of pairs of 
brackets [...] during checking the context conditions. 

Figure 13: Virtual Solling landscape, using rendered trees from L-systems and terrain data 
from a Geographical Information System. From [Knauft 2000] 
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6   B(s, 2) (* B(r, 4) *) ==> B(s, 4); 

7   B(s, 4) ==> B(s, 3) [ RH(random(0, 360)) RU(30) F(30, 1, 14) ] 

In line 2, B is defined to symbolise a cylinder of diameter 3 and of arbitrary length and col-

our. Symbol A has the meaning of a bud, which produces cylindric stem segments B(10, 

2) of length 10 and colour 2 (green) while ageing (A(t) becomes A(t+1)) in line 4. When 

it reaches age 5, it is transformed in a red segment (B(10, 4)) and stops growing (there is 

no A on the right-hand side of the rule in line 5). The rule in line 6 is the context-sensitive 

one: It waits for a red segment (context B(r, 4), enclosed in (* ... *) ) to occur to the 

right (geometrically: above) a green segment. If this happens, the green segment is itself 

 
 

Figure 14: Signal propagation modelled by a context-sensitive L-system (see text) 

 

 
Figure 15: Simulation of flower development of the plant Mycelis muralis, obtained from a 

context-sensitive L-system. From [Prusinkiewicz & Lindenmayer 1990, p. 91] 
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replaced by a red one (B(s, 4) on the right-hand side). The last rule tells us that a red 

segment is in the next step always transformed into a blue segment (B(s, 3)) with a long, 

thin yellow branch (F(30, 1, 14)) in random direction. The development of this simple 

structure in 12 steps, with the red cylinders indicating the downward movement of the 

branch-inducing signal within the virtual plant, is traced in Figure 14.  

Our example was very simplistic, but the same formalism can be used to simulate realistic 

hormonal signals and induction of flowering in rendered virtual plants (Fig. 15).  

4.5 Global sensitivity  

Interaction in the real world does not only take place between objects that are immediate 

neighbours. E.g., in a tree, information can pass from a stem segment to a neighbouring 

segment in the form of hormones or other substances (Fig. 16a), but also from segments 

that are far away, by shadowing (Fig. 16b).  

Context-sensitive L-systems consider only a context in the sense of the string representa-

tion of the generated geometrical structure. This is not enough for modelling the behaviour 

of “globally sensitive” organs, which, e.g., react to shadow and can be influenced by parts 

of the structure that are in a far distance. For this reason, Prusinkiewicz et al. [1994] intro-

duced “environmentally-sensitive L-systems”, which were later generalised by Mĕch & 

Prusinkiewicz [1996] under the name “open L-systems”. Independently, Kurth [1994] intro-

duced “sensitive growth grammars”.5 Common to all these approaches is the possibility of 

communication between distant entities or “modules” by the use of special “communication 

                                                 
5
 – which are not identical with the “relational growth grammars” described below in this paper. 

 

Figure 16: Local (a) and global (b) interactions in a geometrical structure representing some 
organism. Far-reaching effects (b), like shadowing, cannot be modelled by context-sensitive 

L-systems 
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modules” or “sensitive functions”. Specific for the approach followed by Prusinkiewicz et al. 

is a strict conceptual separation maintained between the simulated part (represented by 

strings) and its “environment” (with the created geometrical structure as a part thereof). 

Both parts are differently modelled, and information exchange between the two simultane-

ously running simulations is mediated by special interfaces, the above-mentioned commu-

nication modules (Fig. 17).  

In contrast, we try in our approach to simulate organisms and their environment in a uni-

form manner and using the same language XL. We feel that the border between organism 

and environment is in many cases somehow artificial. E.g., the shadowing parts in Figure 

16 are at the same time parts of the virtual plant and of its virtual environment.  

An example of a globally-sensitive L-system realized in our language XL is given below. It 

simulates “density-sensitive” buds that produce new shoots only if there is no other object 

closer than 60 length units.6 To make the structure not too symmetrical, two different shoot 

types F(100) and F(70), the latter being shorter, are used. The bud is named A and car-

ries the information about the length of the shoot which it will produce in the next step as 

its parameter:  

module A(int s); 

Axiom ==> F(100) [ RU(-30) A(70) ] RU(30) A(100); 

a:A(s) ==> if ( forall(distance(a, (* F *)) > 60) ) 

           ( RH(180) F(s) [ RU(-30) A(70) ] RU(30) A(100) ) 

The first rule creates initially a long shoot with two buds, A(70) and A(100), at its tip. In the 

second rule, the bud A(s) on the left-hand side is labelled by a name, a, to enable 

referencing on the right-hand side to this particular bud. In the “if”-condition on the right-

hand side, we find a query function, “forall”, which looks for all objects of type “F” (specified 

by “(* F *)”) and checks their Euclidean distance to bud a. Only if all these distances ex-

ceed 60 length units, the rule is applied and the bud is replaced by a new shoot (F(s)) with 
                                                 
6
 Notice that the “context condition” is purely geometrically defined and does not require that the potential 

obstacles are topological neighbours of the bud, i.e. that they are directly connected with it. 

 

Figure 17: Division between models of an organism and of its environment 
according to Mĕch & Prusinkiewicz [1996] 
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60 length units, the rule is applied and the bud is replaced by a new shoot (F(s)) with two 

buds at its end (last line). The search is done exhaustively in the whole created structure 

here.  

If we omit the “if”-condition, the result of this L-system is just a binary tree with exponential 

growth, as shown in Figure 18a. With sensitivity in action, not all buds continue growing, 

and the resulting structure contains fewer branches and fewer crossings between them 

(Fig. 18b). Notice that not all crossings of branches are eliminated: The reason is that the 

emptiness of the geometrical neighbourhood of a bud is checked before all the new 

branches have grown. It can happen that closeness or even crossing occurs through si-

multaneous growth of two shoots whose buds were not close enough before, with the con-

sequence that they did not stop to grow.  

With similarly simple grammars, competition between several virtual plants for space and 

light can be simulated (Fig. 19; code not shown).  

To condense the effect of global sensitivity again in a diagram, we find that the currently 

produced structure Si can exert influence on the application of generative rules that rewrite 

the string si to si+1 (red, broken arrows):  

 
 

a b 

Figure 18: Simple tree with dichotomous branching after 7 developmental steps, generated 
by a grammar (a) without and (b) with a condition which incorporates global sensitivity (here: 

suppression of growth by close other objects); see text (adapted from [Kurth 1994].) 
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Of course, it is possible to combine this information flow with the use of interpretive rules 

(see above).  

5 Relational growth grammars  

L-systems have been very fruitful for theoretical investigations in formal language theory 

and for creating realistic-looking models of plants. However, even if all the above-

presented extensions are included, they have some limitations:  

 In interpreted L-systems (with turtle geometry and with brackets for branching), only 

two possible relations can be created between the simulated objects: A can be a direct 

successor of B or can be supported by B as a branch. In reality, much more sorts of re-

lations between objects are possible and can be worth modelling. 

 L-systems are not really an appropriate tool for the creation of truly 2-dimensional or 

even 3-dimensional arrangements, like tessellations in the plane or cellwork systems 

(e.g., in tissues). In fact, there exist formalisms like “map L-systems” and “cellwork L-

systems” (see [Prusinkiewicz & Lindenmayer 1990]), but their definitions and usage are 

rather complicated. The reason is that the classical interpretation of bracketed strings 

by the turtle can only yield locally one-dimensional topologies that are homeomorphic 

to trees. Particularly, cycles and networks can be created only if additional tools or 

tricks are allowed. 

 Multiscaled modelling, i.e., the simultaneous specification of some structure at several 

different levels of resolution, is not supported. 

  

a b c 

Figure 19: Growth of three virtual trees competing for light, modelled using a globally-
sensitive grammar; from [Kurth 1999] 
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 For the biologists, it is a drawback that genotype and phenotype of an organism cannot 

be modelled in the same formal framework (although the DNA molecule has basically 

string structure). 

 From the perspective of software development, L-systems as a programming language 

are a poor language; particularly, the object-oriented programming (OOP) style, which 

is today very commonly used by programmers, is not supported: The fundamental units 

of the formalism are only symbols (perhaps with some added numerical parameters), 

no objects in the sense of OOP. Particularly, no hierarchy of object classes, where 

specialised classes inherit properties from more general classes, can be defined in the 

classical L-system formalism. 

These were reasons enough to design a new formalism, “relational growth grammars” 

(RGG), and a corresponding programming language, XL (eXtended L-systems language). 

An RGG is a rewriting system operating on graphs instead of strings – here, a graph is a 

structure consisting of nodes and arcs (also called “edges”) connecting some of these 

nodes, and it can have cyclic substructures. We speak of “relational” grammars because 

we permit several types of edges (relations). This extension of the L-system concept ad-

dresses the first 4 points above [Kniemeyer et al. 2004]. The fifth point is addressed by 

permitting RGG rules as constructions in a programming language (XL), which is at the 

same time a true extension of the object-oriented language Java, and by permitting Java 

objects as nodes of the graphs that are rewritten.7 An exact mathematical definition of 

RGG and a precise language specification for XL will be given by Kniemeyer [2007].  

The graphs which are rewritten by an XL programme can also be seen as generalisations 

of scene graphs, as they are known from 3-D modelling languages and tools like VRML, 

Java 3D or Maya. Particularly, their nodes can stand for geometrical objects and also for 

transformations of objects (like translation, rotation, scaling...). Indeed, we have already 

used this feature in our Menger sponge example above (see Fig. 9).  

The general structure of an RGG rule is shown in Figure 20. An RGG is composed of such 

rules, which are usually applied to a given graph in parallel, like L-system rules.  

The application of a simple RGG rule to a given graph is demonstrated in Figure 21. Here, 

the upper part of the Figure describes the rule. There is no context C, no condition E and 

no procedural code P in this case. So, the left-hand side, two nodes of classes A and B 

that are connected by a directed edge from A to B, has to be replaced by the right-hand 

side wherever it occurs. There are two sorts of edges (relations) in this example, which are 

visualised as solid and dotted arrows, respectively. The lower part of the Figure shows ex-

emplarily an application of this rule: the red part on the left, encircled by a solid blue line, is 

                                                 
7
 A similar approach led to the language “L+C” [Karwowski & Prusinkiewicz 2003], which is an extension of 

C++ by L-system rules, but this language does not include graph transformations. 
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identical with the left-hand side of the rule and is thus replaced by the corresponding right-

hand side (result: lower right part of the Figure). Notice that the left-hand side of the rule 

does not match the part of the graph that is encircled by the broken blue line, because the 

edge connecting A with B is of the wrong sort there.  

Relational growth grammars are a special form of graph grammars. As for L-systems, 

there exists a well-developed theory about graph grammars [Rozenberg 1997]. L-systems 

can be subsumed as a special case, because strings can be represented as special 

graphs with a linear structure, with edges of a certain, fixed type “successor” between con-

secutive symbols. In XL, edges are generally written down in the form “—edgelabel—>“, 

where “edgelabel” specifies the type of the edge – but because the edge type “successor” 

is so often used, a simple blank symbol is allowed instead of “—successor—>“. This 

 

Figure 20: Syntactic structure of an RGG rule 
The essential effect of this rule is to replace L by R (and to execute P) 

 

Figure 21: Application of a relational growth grammar rule (upper part) to a graph (lower part) 
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convention allows us to write down L-system rules in XL in a quite familiar manner – and in 

fact, all L-system examples shown above were directly taken from XL programmes. In or-

der to make them readable by an XL compiler (like that in the software GroIMP, see be-

low), one has only to enclose the rules (not the “module” declarations) in a surrounding 

construction of the form  

public void run() 

   [ 

   ... 
   ] 

(with the exception of the examples using interpretive rules, where a similar construction 

was already explicitly given). The reason is that RGG rules in XL can be organised in sev-

eral blocks, in order to enable a better control of the order of rule application – thus making 

accessible the possibilities of so-called table L-systems [Rozenberg 1973].  

However, the capacity of RGGs goes far beyond L-systems. A simple example for a graph 

transformation which cannot be expressed as an L-system rule occurs in genetics: In the 

context of sexual reproduction, there is the process of recombination of genetic informa-

tion, which takes place by so-called “crossing over” of two aligned DNA strings. The basic 

transformation, which exchanges the bindings between the two DNA strings, is shown in 

Figure 22.  

An XL representation of this rule is  

a b, c d, (* a -align- c *) ==>> a d, c b; 

and in fact we have used this rule together with one for mutation to simulate the evolution 

of artificial “biomorphs” [Kniemeyer et al. 2004].  

In addition to the genetic level, it is also possible to represent biochemical reactions and 

metabolic reaction networks in the form of RGG rules. We will not go into details here (see 

[Buck-Sorlin et al. 2005]), but we show some of the visual results of models which have as 

a non-visible part also some metabolic and, in some cases, also genetic components: Fig-

 

Figure 22: Graphical representation of an RGG-rule for genetic crossing-over 
 Unbroken arrows stand for the successor relation in base sequences of DNA, dotted 

lines for alignment between two homologous DNA strings 
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ure 23 shows a flower and a mutant thereof, where some gene is deactivated – the effect 

of the “silent gene”, namely, the lack of petals, is mediated by a reaction network (see 

[Kniemeyer et al. 2004]).  

Figure 24 shows two developmental steps of a virtual rapeseed plant, which is assimilating 

virtual carbon depending on virtual light interception and nitrogen availability, and which 

allocates this carbon to its growing organs according to the (time-dependent) relations be-

tween source and sink strengths; see [Groer 2006]. Figure 25 shows a virtual barley plant 

(including the root system, which was not modelled in the other examples shown above), 

which depends in its growth not only on sunlight, but also on a reaction network producing 

a plant hormone (Gibberellic acid), like in real plants, and which can reproduce and mutate 

(Buck-Sorlin et al., partially unpublished work, see also [Buck-Sorlin et al. 2005]).  

In the field of computer-graphical modelling of plants, the traditional L-system approach 

has recently been challenged by the Xfrog software, developed by Deussen and Linter-

mann, see [Deussen 2003]: Here, graphs are interactively edited which define implicitly 

rules for the multiplication and arrangement of geometrical objects. Although this graph-

controlled approach is not based on biological laws, it allows a quick interactive specifica-

tion of complex vegetation models. However, the graphs used in Xfrog and the creation of 

geometrical structures based on them can exactly be reproduced in the language XL (if 

RGG rules are complemented by a further type of rules, so-called instantiation rules) – see 

[Henke 2007]. The relations between Xfrog and our rule-based approach will be subject of 

a forthcoming article [Henke et al. 2007]. Figure 26 shows results of the simulation of 

Xfrog-defined structures in XL.  

 

Figure 23: Virtual “wild type” (left) and “mutant” (right) of a flowering plant, generated 
by an RGG which encodes also the causal genes and (a part of) the mediating tran-
scription-factor reaction network (from [Kniemeyer et al. 2004], based on earlier work 

by [Kim 2001]) 
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But the use of RGGs is not restricted to plants. Figure 27 indicates other fields of applica-

tion, which are not yet completely explored.  

Relational growth grammars, embedded in XL programmes, can be read and executed by 

a software named GroIMP (Growth-grammar related Interactive Modelling Platform). This 

platform-independent software contains an XL compiler, a development tool (extended edi-

tor) for XL, a 3-D modeller and renderer (including a raytracer), a 2-D visualiser for the 

transformed graphs, windows for plotting functions, editing facilities for 3-D objects and for 

their attributes, tools for generating textures, networking facilities, a collection of RGG ex-

amples and a tutorial for the language XL. XL and GroIMP will be thoroughly documented 

in [Kniemeyer 2007].8 A screenshot of the current GroIMP version is shown in Figure 28. 

All images of virtual structures in this paper were generated with GroIMP, with the follow-

ing exceptions: Figures 10 to 12 and 19 were created with the GroIMP-forerunner Grogra 

[Kurth 1994], 13 is from [Knauft 2000], 15 is from [Prusinkiewicz & Lindenmayer 1990].  

                                                 
8
 The software is available by download under the GNU public licence (GPL), i.e., as an open-source tool; 

see http://www.grogra.de . 

 

Figure 24: Virtual rapeseed, generated by an RGG taking photosynthesis, nitrogen uptake 
and carbon allocation into account, all programmed in XL. From [Groer 2006] 
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Figure 25: Virtual barley plant with hormonal metabolism and genetic features, see text. 
From [Buck-Sorlin et al. 2006] 

 

 

 
 

a b 

Figure 26: Virtual plants generated using instantiation rules in XL that simulate the way in 
which the Xfrog software [Deussen 2003] specifies virtual plants; from [Henke 2007] 
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a b 

Figure 27: RGG-based modelling beyond plants. (a) Insect-like animal (Bischof, unpub-
lished). (b) Simulation of the agent-based “Sugarscape” model of an artificial society on a 

rectangular grid; from [Graeber 2006] 
 

 

Figure 28: Screenshot of the GroIMP software (download possible from www.grogra.de) 
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6 Discussion  

The visual models of plants obtained with L-systems and relational growth grammars cor-

roborate the assumption that these mathematical formalisms are appropriate tools to cap-

ture essential aspects of morphological structures in the world of plants – maybe analo-

gously to the appropriateness of differential equations for modelling phenomena in phys-

ics. In fact, it is straightforward to formalise such morphological phenomena which are 

known by botanists under the notions of “acrotony”, “neoformation”, “sleeping buds”, “reit-

eration”, “apical control” etc. in the language of L-systems (see, e.g., [Kurth 1996]). If L-

systems are extended to more flexible formalisms like relational growth grammars, this 

appropriateness can also be stated for plant models that connect several levels of spatial 

resolution, and for functional-structural models where the purely morphological layer is 

complemented by processes taking place “behind” the visual world or at smaller scales. It 

can be conjectured that models for the evolution of network structures could also profit 

from a formalisation in the frame of a rule-based language like RGGs. Early studies did 

already explore some non-biological applications of L-systems: Specification of planar 

tilings, music [Prusinkiewicz & Hanan 1989], ornaments, weave patterns, architecture, 

evaluation of mathematical expressions, robotics [Goel & Rozehnal 1991]. In a present 

students’ course at the University of Technology at Cottbus, we just explore the usage of 

RGGs in architectural design.  

Another possible field of applications for rule-based formalisms is chemistry. Chemical re-

actions have some similarity with grammar rules, but they usually take place in an unstruc-

tured “soup” consisting of a very large number of molecules – hence the linear ordering 

which we had in the L-system strings does not apply here, and it is doubtful if one can 

speak of morphological structures in this case, except when we restrict our focus to single, 

but complex molecules. Another feature of L-systems and RGGs that make them seem 

inappropriate for applications in chemistry and physics is their discretisation of time. 

Mathematical descriptions of classical dynamical systems make use of the concept of con-

tinuous time. This concept does also make sense when smooth animations of growth 

processes, of animal movement etc. are wanted. However, it has already been shown that 

“timed L-systems” can be defined, which abandon the concept of fixed-length developmen-

tal steps in favour of continuous growth and event-driven application of rules [Prus-

inkiewicz & Lindenmayer 1990]. The incorporation of these modifications into more ad-

vanced formalisms like RGGs is still to be done, but will probably pose no great difficulties.  

A probably even more urgent need for theoretical and practical research is revealed by the 

question how truly 2-D and 3-D structures like planar maps or spatial cellworks – in con-

trast to essentially 1-dimensional tree-like structures – and their growth and dynamics can 

be elegantly modelled using an appropriate grammar formalism. Until this challenge is not 

resolved by a really intuitive and compact calculus, we cannot say that true picture mor-
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phology can be satisfactorily modelled by known rule-based formalisms like L-systems. 

However, our experience from the creation of virtual plants and of some other interesting 

virtual patterns suggests that there are some features inherent to the rule-based pro-

gramming paradigm which make it a promising candidate for playing a prominent role in a 

future theory of picture morphology.  
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