
Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

1

Code.surface || Code.depth
By Rita Raley
No. 36 – 2006

Abstract

This essay begins by identifying a central idea in the critical discourse on code art
and code poetry: code is a deep structure that instantiates a surface. The AP
Project’s Jonathan Kemp and Martin Howse, for example, explain that their work
makes “manifest underlying systematics,” that can make the digital “physical,
audible and visible through geological computing.” In what sense, if at all, can we
trace a computing operation down to a foundation, bottom, or core? Why do we
maintain this cultural imaginary of code and how has it come into being? Moreover,
how have the metaphors of software engineering – particularly the notion of
structured layers and multitier architectures – been put to artistic use? The
thematizing of layers, surfaces, and spatial metaphors has become quite intricate
in new media writing practices, as I will demonstrate in a reading of
“Lascaux.Symbol.ic,” one of Ted Warnell’s Poems by Nari, and recent projects by
John Cayley, including Overboard and Translation. These readings, among others,
will point to a logical tension between, on the one hand, the discourse of the
foundational architecture of code, a “geological computing” that mines the depths
to produce a geology (or a mythology) of surface and, on the other, the discourse of
computational code in terms of inaccessible, inscrutable processes.

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

2

1. Code.surface || Code.depth

Jean-Luc Godard’s Le Mépris/Contempt (1963) opens with a long shot of Giorgia
Moll on a studio lot. She reads from a book (perhaps a script) as she walks along
dolly tracks toward the front of the screen, tracked by Raoul Coutard’s camera and
an attending crew. The voice-over recounts the primary credits – actors,
cinematographer, writer, editor, director – noting as well that the film was shot in
Cinemascope and naming the lab where it was processed. Once the actress and
crew reach the front of the screen, we hear a quote attributed to André Bazin on
cinema ‘substituting for our gaze’ and the camera turns to face the audience,
moving in for a close shot and incorporating us as spectators and filmic subjects.
Such does Contempt appear to lay bare the material conditions of filmic production,
a gesture of revealing echoed by the immediate jump to the ‘real’ beginning of the
film, which features Brigitte Bardot in bed and spectacularly nude. The next scene
will show us Moll’s character walking in the very same studio lot, this time in a
transparent rather than constructed frame. If the first calls our attention to
mediation and ostensibly exposes the mechanism of filmic production, this scene
takes on the point of the view of the camera within the frame and produces a sense
of immediacy. However, we have not at the outset been privy to an exposure of the
actual conditions of production. Rather, the opening of the film lays bare the
symbolic conditions of production. What has been brought to the fore, or in the
rhetoric of new media, the surface, is not the mechanism itself but a representation
of the mechanism.

This filmic scene perfectly captures the impetus of contemporary code art, which
is, put simply, to reveal codes, to make the mechanism of production visible to the
viewer. As it would have been for Godard, such a move endeavors to puncture the

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

3

insularity of the representational frame. But such an impulse is also partly
corrective: even now, code artists might say, there is a tendency to regard the work
of art as separate from the work of software engineering and situating code on the
interface complicates the notion that a program is merely a tool with which to
produce the ‘real’ art. The Whitney Artport CODEDoc show was in this respect
paradigmatic in that it prompted viewers to consider algorithm and output in
generative relation: since each “enter project” button was located at the end of the
different programs, viewers had at a bare minimum to pass their eyes over the
artists’ code as they scrolled to the bottom to reach the link to the visual display.1
Viewers were thus prompted to consider where they located cultural, artistic, and
institutional value: with the code (instruction sets for translating a message from
one symbolic form to another), execution (machinic process), or output (object). So,
too, TOPLAP’s “live coding” concerts combine coding and performance and write
both under the sign of artistic improvisation; as their manifesto professes, “Live
coding is not about tools. Algorithms are thoughts.”2 But the investment in making
code visible is far more pervasive and powerful than the question about the division
of labor and disciplinary distinctions might suggest. It reaches beyond the problem
of the work of art to the insight that “code is law” and, as such, an architecture for
control by government and technocratic experts.3 Bringing code to the interface,
moving it from background to foreground, in this respect bears a strong relation to
free software and open source movements. (It might go without saying that
codework’s contemplation of the conditions of production does not usually extend
to the machine itself, to the socio-economic problems of hardware sweatshops, nor
to the ecological problems of e-waste.4) As even the most preliminary web search
would make clearly evident, code in the broad sense of programming languages
has become an object and medium not only of artistic and literary production, but
also of critical inquiry and political engagement.

Such a general statement, however, must surely seem commonplace after more
than a decade of exposure to Jodi’s work and the extensive critical discourse these
artists have inspired. We can extract from an early analysis of their projects by Hans
Dieter Huber the now-axiomatic notion that code is a deep structure that
instantiates a surface: “In principle, all of the Internet-based works are based on the
difference between code and surface. The source code represents a kind of
notation or musical score that is interpreted by the computer when a page is called
up by a specific browser such as Netscape, Internet Explorer or Opera. Like a virtual
conductor or a symphony orchestra, the browser performs the score and displays
it on the surface of the monitor. What we see is only the surface of a specific
interpretation.”5 Huber is here discussing the relation between HTML source and
interface but the tension between visible and hidden structures, between the
surface and the depths, is paradigmatic. Witness Talan Memmott in a discussion
of his notable Lexia to Perplexia: “The encoding is multi-layered. There is the code-
base of the application, which certainly participates in the narrative construction of

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

4

the work through interactive functionality. The code-base also bubbles through to
the surface, to the superficial narrative – the readable text – by what you have called
‘overprocessing.’”6

In works such as Memmott’s, code is brought, or “bubbles,” to the surface as a static
linguistic and aesthetic artifact rather than as a functional program. Such a move
situates natural and programming languages within the same semiotic frame and
presents the interface as a kind of “intersection of words and symbols,” as the
epigraph to Giselle Beiguelman’s meta-critical work, The Book after the Book / O
Livro depois do Livro indicates.7 The visual chaos of her piece suggests that the
intersection or encounter is not without interference; as she explains, the layers, the
linguistic and digital “substrata,” leak into each other.8 The resulting text presents
itself as something to be read while still alluding to the programming languages that
generate the text on the interface, for example by including lines of binary code or
symbolic elements of high-level programming languages such as forward slashes.
For example, incorporating the double pipe, the logical ‘or’ condition (||), within a
document written in English invites the reader to think in terms of an either/or
structure, not an aporia exactly since the logic is substitutive (if the conditions of ‘a’
are not met, run ‘b’), but at the very least pointing to a tension that may or may not
be resolvable.9 Another rationale for the foregrounding of codes is provided by
Jessica Loseby’s Code Scares Me, in which she incorporates elements of the site’s
HTML so as to confront the strangeness of “what lies buried within the under texts,”
within the “depths.”10 Substrata and depth may be suggested by the display of
codes and coding elements but, paradoxically, this type of code writing practice
isolates the screen as surface.11 Beiguelman’s Book points to this construction of
pure surface: “Any page on the web seems to be only surface. The very metaphor
of the screen with the page reinforces the assurance. Nevertheless, it is just an
optical illusion. What is shown is not there. It is hidden. It is the source.”12

Exposing the mechanism of production, then,
instantiates a surface or, as the I/O/D project’s
Matthew Fuller names it, a “visceral façade.”13
What the façade of the code surface masks is
the deep structure of code, the tower of
programming languages that descend from
software to hardware. What is the deep
structure of computing and are we able to see
or otherwise access it? Are there coding
practices that can, as the AP Project’s Jonathan Kemp and Martin Howse profess,
“manifest underlying systematics,” that can make the digital “physical, audible and
visible through geological computing”?14 In what sense, if at all, can we trace a
computing operation down to a foundation, bottom, or core? To pick up on Kemp
and Howse’s metaphor, is such an excavation possible? Can we think in terms of a

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

5

deep structure of code through which we can trace an archaeology of surface? As
this essay will indicate, there is a logical tension between those who claim a
foundational architecture for code and those who point to code as an inaccessible
black box. For example, Fuller speaks to the “subscopic,” “invisible,” and
“inscrutable” aspect of software implementation, to our inability to achieve anything
like a comprehensive view of its operations: “it is worth noting that simply because
they occur at the level of electrons the axes of software are impossible to find for
the average user. Just as when watching a film we miss out the black lines in
between the frames flashing past at 24 per second, the invisible walls of software
are designed to remain inscrutable….these subscopic transformation of data inside
the computer are simultaneously real and symbolic.” If we wanted to construct a
more apposite filmic analogy for this issue of exposing the mechanism of
production and mapping its “geological” structure, then, we would perhaps have to
subject the celluloid used for the opening of Contempt to microscopic examination.

To what extent is there a correlation between spatial metaphors of surface and
depth and machinic architecture? Why do we maintain this cultural imaginary of
code and how has it come into being? General perusal of the ACM proceedings of
the 1950s and early 1960s indicates that programming had not yet evolved into
software layers. Modular programs and subroutines, in other words, did not
necessarily lead people to think in terms of building layers of abstraction. At what
point, then, do notions of tiers or layers come into play? At what point do we begin
to see people thinking in terms of building layers of abstraction? Martin Campbell-
Kelly pointed me to the 1968 Garmisch software engineering conference for clues
to the research and industrial environment of the period.15 Conference proceedings
suggest that the notion of multiple layers of software emerges with structured
programming and theories of abstract data types. In a working paper, “Complexity
Controlled by Hierarchical Ordering of Function and Variability,” Edsger W. Dijkstra
emphasizes that “the software of our multiprogramming system can be regarded
as structured in layers” (182).16 He goes on to explain: “The subsequent ordering in
layers has been guided by convenience and was therefore, as said, more hardware
bound. It was recognized that the provision of virtual processors for each user
program could conveniently be used to provide also one virtual processor for each
of the sequential processes to be performed in relatively close synchronism with
each of the (mutually asynchronous) pieces of I/0 equipment. The software
describing these processes was thereby placed in layers above the one in which the
abstraction from our single processor had to be implemented” (183). With the
notion of multiple layers of software comes the notion that layers leak into each
other: “what is put in layer 0 penetrates the whole of the design on top of it and the
decision what to put there has far reaching consequences” (184).

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

6

2. Lascaux.Symbol.ic

This brings me then to my central questions: How have the metaphors of software
engineering – particularly the notion of structured layers and multitier architectures
– been put to artistic use? What compels the discursive and physical instantiation
of a surface? What is at stake in such an artistic project? The thematizing of layers
and spatial metaphors has become quite intricate in new media writing practices,
as we shall first see in a reading of “Lascaux.Symbol.ic,” one of Ted Warnell’s Poems
by Nari (“by Nari” = binary). Initial decoding of the text requires the recognition of
the connection between the displayed numbers on the one hand and the variables
and arithmetic operators on the other. At first look, it appears that the script that
executes the numeric text is displayed on the interface surface, as if the code that
regenerates the numbers in the bottom left-hand corner and below the visual frame
is not only visual but operational. “Lascaux” purports, then, to make all of the code
processes of the visual poem manifest to the reader, to open its source and show
us how it works. In fact, however, the code is placed within HTML comment tags
that would generally be used to hide the script from older browsers.18 It should be
noted that my reading here requires the rather safe assumption that Warnell made
a decision to comment out rather than turn the script itself into an image file. Here
is an explanation of the comment tags on Lascaux’s surface:

<SCRIPT language=”JavaScript”>
<!-- Hide the following script from old browsers:
var d = new Date();
var t = d.getTime();
var x = (t % 9) + 1;
document.write("0" + x + "
");
document.write("[0" + x + "]");
// End the hiding here. -->
</SCRIPT>

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

7

The two forward slashes (//) indicate a comment and stop the JavaScript
interpreter from compiling the line, which in an older browser would have resulted
in the display of the script as page content. Comment tags would have been good
etiquette at a time when programmers could assume that a fair number of users
were using browsers not yet able to support JavaScript, which was first possible
with a December 1995 release of Navigator 2.0 (JScript was developed for Internet
Explorer version 3.0, released in August 1996).19 In that commenting out prevents
compilation, here the Script tag situates the code lines as visual rather than
functional. As such, it is content rather than etiquette. Like Godard’s Contempt,
then, “Lascaux” suggests a symbolic rather than an actual laying bare of the
conditions of production. What is apparently brought to the surface and displayed
for the reader is in fact commented out, hidden. And embedded within this
comment tag is the intricate history of browser technologies.

Demarcating a break between the eras of “old” and “new” browsers deepens the
historical narrative of a piece that situates prehistoric art and programming
languages within the same artistic frame. The dominant visual backdrop of the
piece is a black-and-white image of a horse from the cave wall at Lascaux, c. 15,000
bce.20 Layering then produces the effect of writing on the wall, as if the JavaScript
were inscribed on its surface or even as if coding were a kind of tagging. There are
limits perhaps to the comparison of cave paintings and code – certainly one would
not want to suggest a transcendental signifying system that would render each
legible – but their layering in this context reminds us of the extent to which each
requires specialized literacy practices. Both are understood to be at once
communicative and expressive, functional semiotic systems but also “art.” As the
intermediary hand would imply, both are in a sense forms of writing requiring craft
and technique. Its transparency reminiscent of the Xeroxed image, the
representation of the hand also invites us to think in terms of tactility, touching the
interface, leaving behind the ghostly traces of one’s presence.21 The hand is thus
cave writing in another sense, invoking the Australian aboriginal practice of leaving
an imprint of the hand by spraying pigment over its surface.22 Code-as-inscription
necessarily emphasizes code’s materiality, an idea that would be familiar to critics
such as Matthew Kirschenbaum, Katherine Hayles, and John Cayley.

Next we can turn our attention to the missing upper-left corner, which suggests that
the visual frame is mounted. It is as if the cave wall is not in fact the background
but itself mounted on another background, the default white screen of the browser
window. Such is the complexity of the layering in this piece, then, that the very
concepts of “foreground” and “background” are rendered fundamentally unstable.
The missing corner in “Lascaux” also calls up another historical era: the near-
antiquity of punch-card computing. Virtual archaeological relics in our current IT
imaginary, punch cards are here analogized to cave walls, each a “new” medium for
the recording of data.

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

8

3. Reading code
In his programmable media and his critical essays on codework, John Cayley has
endeavored to call our attention to the material difference between code addressed
to a reader (pretend) and code addressed to the machine (genuine). The opening
lines of a HyperTalk experiment illustrates that difference through the form of a
poem-program that is operational within the realms of both natural and
programming languages.

on write
 repeat twice
 do “global “ & characteristics
 end repeat
 repeat with programmers = one to always
 if touching then

put essential into invariance
 else

put the round of simplicity * engineering / synchronicity + one into
invariance

 end if
 if invariance > the random of engineering and not categorical then

put ideals + one into media
if subversive then
 put false into subversive
end if
if media > instantiation then
 put one into media
end if

 else
put the inscription of conjunctions + one into media

 end if

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

9

In its complete form, this poem-program signifies and functions within both
symbolic systems in that it is capable of altering either one; it is interpretable,
working code that is also human-readable. Its address, then, is ambiguous. The
code could alter the behavior of the system if it were included as one routine in a
text generator, with the acknowledgment that its execution might be
inconsequential.23 And the code could also be interpreted by a human reader, with
the acknowledgment that the lines are less meaningful than they are allusive.
Designed both for reading and for compilation, then, this text collapses and yet also
situates the difference between program and poem. It prompts two different
readings, two different interpretations.

Is code then semiotic? Is it, contra Ellen Ullman, a “text for an academic to read”?24
Do the linguistic sensibilities that have informed the development of programming
languages mean that we can regard code as we would any natural language and
analyze its grammar, logic, and rhetoric?25 Or would thinking in these terms reiterate
the fallacy of The Matrix and imply that One with special insight may render code
absolutely legible, even figurative? I am thinking here of the moment that the Neo
character realizes his gift: instead of seeing three Agents at the end of the hallway,
he sees human figures composed of vertical strings of code. The failure of the film
on this score is its inability to keep code within its proper signifying system: it must,
rather, acquire dimensionality and be made to take human shape. Jutta Steidl
writes in an essay for the ‘I Love You’ virus exhibition that “the hermeneutics of
source code do exist”: if we were to read code properly, which is to say with the
proper literary sensibility, then we would be able to recognize “the true beauty of
human language.”26 Far from alone in expressing the general sentiment that
program code is itself artistic material rather than the functional process by which
the ‘real’ work of art is produced, Steidl would have rather less support for the notion
that one could read code precisely as language, much less for the notion that an
unmediated encounter with code as “the original, primal text” would be possible at
all. While it is certainly the case that high-level programming languages such as
HyperTalk are readable in a general sense and that linguistic knowledge is
continually translated into putatively neutral programming structures, however,
critics such as Adrian Mackenzie and Katherine Hayles have pointed to the limits of
signification as it is conventionally understood with regard to code.27 So, for
example, we might ask if the linear nature of signification still pertains in the context
of a program that does not ‘read’ from left to right, or that is linear not to the reader
but to the program as it executes. And therein we can locate the difference of the
sign system of code: its executability, its operative transformation of a message
from one symbolic form to another. Or to return to Cayley’s experiment, and to stay
within the perimeters of his work: code and language alike may amuse, astonish,
inform, and delight; both may be written and read; both are performative and may
initiate changes in the world; but one can be executed by the computer and one
cannot.

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

10

Mackenzie notes that the “readability of code relates to execution, to how it
circulates, how quickly it can be read and understood by other programmers, and
how it affords revisions, modulations and modifications” (16). But at this stage we
might ask: what of codes that are not executed or even code whose purpose is not
to function but to crash?28 Is there not a crucial difference between code and
computation? In the computing context, we can understand code in general terms
as a sequence of commands that tell a computer what to do. But, as Michael
Mateas and Nick Montfort’s analysis of obfuscated programming reminds us, code
may exist for years without ever being implemented on a computer.29 (Alexander
Galloway’s entry of a fork bomb into the Whitney Artport CODEDoc show makes the
same point about the difference between code-as-text and code-as-operation.30)
Code then cannot ultimately be reduced to mere execution, not only in such cases
as its function is precisely not to function, but also in such cases where it lies
dormant. In this sense, Mackenzie’s account of code in terms of the linguistic
performative is inspired, indicating as it does a gap between expression and
execution. (Thinking ‘you’re fired’ is one thing; actually saying it in a boardroom is
quite another.)31

4. Overboard

We can turn to Cayley’s recent work in order to consider further the relations
between code and text, surface and depth, as they are articulated in the context of
new media writing. On the surface, Overboard performs continually evolving
mutations of a verse passage adapted from William Bradford’s Of Plymouth
Plantation. In its interior, Overboard is an algorithmically generated text, a “kinetic
language painting” characterized by its “operative performance.”32 It is also “literal
art”: the name Cayley gives to an art practice that explores morphological and

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

11

symbolic connections among words and letters.33 This practice has evolved and
become more complex from his earlier riverIsland to Overboard and the more recent
Translation. In all, the screen space may be organized by stanza and poetic line, but
the letter is the primary unit of analysis. Overboard often pairs letters that are
proximate and/or bear a morphological relation to each other, e.g. “i” and “j” or “b”
and “p,” and these letters – the grid cells – operate in a sequenced transposition.
Using relatively simple algorithms to produce a complex surface makes this project
retroactively a perfect example for Hayles’ analysis of the relations between analog
and digital textuality. In “Simulating Narratives: What Virtual Creatures Can Teach
Us,” she explains that analogical relations are structured on a depth model; that is,
the analogical requires links between the surface and depth units (13). For the
analogical, complex codes produce a simple surface, and here we might think of the
mythology of the Author that holds that a kind of complex interiority lends the text
its depth. For the digital, on the other hand, a complex surface is produced by
underlying simple models.

Though Overboard implies a teleological structure in its “ambient states” of
“floating,” “sinking,” and “surfacing,” it does not definitively proceed from opacity to
clarity, or from clarity to opacity. Indeed, a ‘complete’ realization of the text is
markedly temporary: the Bradford text comes to the surface as an integral unit only
briefly before the ‘proper’ letters begin to permutate and slip away. The effect of this
is circularity, as if it were programmed with continual replay loops, but the
algorithms in fact initiate an interplay between the random and the nonrandom.
Although their primary unit of textual generation was the word rather than the letter,
Jackson Mac Low and John Cage can be read as precursors to this kind of quasi-
randomization of text.34 In all we can see an interest in chance operations and an
investment in the mechanisms by which pattern, structure, and order emerges
spontaneously. In all we can see a visual presentation of rule-based behavior.
However, the programmable aspect of Cayley’s text-generation procedures renders
them practically and theoretically different from print-based experiments.35 The use
of generative algorithms in his work results in texts that in a significant sense
program and emerge from themselves. As he notes, chance operations and the
accrual of data input mean that “the procedure ‘learns’ new collocations and alters
itself” (“Beyond Codexspace” 180).

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

12

While the morphological and even phonic relations among the letters serve to
stabilize signification to a certain extent – insofar as the reader can intermittently
pick up some of the patterns inherent in the transformation of the text – legibility is
only partially insured on the side of production. That is, the time-based text
sequences in Overboard, the “ambient states” of the piece, are generated by
algorithms that are simple but that nevertheless produce complex semiotic
effects.36 To reiterate: rather than proceeding from legibility to illegibility, or from
completeness to fragmentation, and thereby stabilizing its own instability,
Overboard is inherently unstable. Cayley explains: “There is a stable text underlying
its continuously changing display and this text may occasionally rise to the surface
of normal legibility in its entirety. However, Overboard is installed as a dynamic
linguistic ‘wall-hanging,’ an ever-moving ‘language painting.’ As time passes, the
text drifts continually in and out of familiar legibility - sinking, rising, and sometimes
in part, ‘going under’ or drowning, then rising to the surface once again.”37 Rather
than generating language per se, Cayley’s transliteral text generation procedures
enact “liminal, hybrid linguistic phenomena.”38 These linguistic phenomena are
legible as language only to the extent that the reader/user understands them to be
approximations of such. We might then reach even further and consider Cayley’s
texts as autopoietic systems, self-generated and stable despite the continuous flow
of matter and energy.

Overboard is not only a fluid textual sculpture, but also a fragmented visual image
and sound composition. The thematizing of surface is not limited to the text
sequences, however, but also performed by the visual image of an ocean surface
rendered as a cut-up. The verso-recto split screen between oceanic and textual
surfaces suggests that one medium resonates off of another, but there is not a strict
1:1 correspondence between the two. The page layout simulates a kind of
translation and equivalence between the two sides, as if they formally recognized
and responded to each other. Recognition or equivalence, however, occurs at the

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

13

coding level, with bell sounds and the cursor linked conditionally to the appearance
of certain instantiations of language.

5. Translation

I turn now to Cayley’s Translation, another literal art project that in this instance
“investigates iterative, procedural ‘movement’ from one language to another.”39
Running the same algorithmic processes as Overboard, Translation cycles texts
through the three states of floating, sinking, or surfacing. On the surface,
Translation performs continually evolving translations – or symbolic translations –
among English, French, and German versions of excerpts taken from both Proust
and Walter Benjamin’s essay “On Language as Such and the Language of Man.”40
The verso features a scanned image of a page from a German-language version of
Proust and the recto the Benjamin and Proust excerpts, suggesting perhaps that
translations are being performed on the fly. Although it is possible to summon a
complete English, French, or German text to the surface by keystroke, any act of
translation would necessarily be both incomplete and symbolic. (The motifs of
incompleteness, transformation and mutation carry through to the ‘versioning’ of
the project, variations of which include Ukrainian translations and fairly
monochromatic graphics in the place of the cut-up German codex.) Informed by
the contemporary critical discourse on cross-cultural translation, and Cayley’s

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

14

practice as a translator, these translations enact the remainder, the incompleteness
of linguistic exchange, and the spatial movements of language. The translations of
Proust, for example, notably do not pass through English en route from French to
German, as would be the case for any standard machine translation, informed as it
would be by technologies that developed on the basis of Warren Weaver’s
understanding of translation as a problem of decryption. (In Cayley’s descriptions
of the coding of this work, source and target implicitly allude to, but do not directly
reference, Weaver.) Rather, the visual representation of pages from the German
translation implies a proximity to the original French that would not necessarily be
implied by a transcribed version of the text.

The ‘source text’ for Translation, insofar as one can fix a source for a piece that calls
into question the very status of a primary or originary text, is Benjamin’s essay on
language, the English-language version of which can be pulled to the surface with
the shift-e command:

Translation attains its full meaning in the realization that every evolved
language can be considered a translation of all the others. By the relation of
languages as between media of varying densities the translatability of
languages is established. Translation is removal from one language into
another through a continuum of transformations. Translation passes
through continua of transformation, not abstract areas of identity and
similarity.41

In its basic operation, I will suggest, Translation is an enacting of Benjamin’s
conception of translation as the generation of language. The project thematizes
and performs translation as transformation: one translation, one transformation,
produces another.42 Moreover, the translation from one sign into another is also the
translation from one medium into another.

In that the source text is itself a kind of translation of Benjamin – Cayley has done
some lineation – its status as a ‘version’ also calls into question the notion of an
original. The adaptation is not quite as dramatic as the versification of Bradford in
Overboard but here we must focus on what I take to be the most important of the
changes: the omission of “(with the exception of the word of God)” from Cayley’s
transcription of Benjamin. The ‘word of God’ is for Benjamin the originary language
in a mystical sense, the pure language in which word and referent coincide. By
omitting the reference to the word of God, Cayley eliminates, or rather simply
appears to eliminate, the transcendental. Excluding the word of God, in other words,
leaves no non-translated language. Rather, all languages are translations of other
languages. But the omission of the Benjaminian transcendental also leaves open
the possibility that there might be a substitute operating, as it were, beneath the
surface. In other words, for a critic deeply invested in the distinction between
pretend and genuine code, between symbolic and operational code, code itself must

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

15

certainly be understood as a generative sign system, as a language that generates
all others and forms rather than “passes through continua of transformation.” That
the text describing the transformation is the very text being transformed, however,
should alone indicate that Cayley would refuse the claim for code as a
transcendental sign system. In other words, eliminating the transcendental, the
metacode, suggests its impossibility.

6. Writing for complex surfaces
Two of Cayley’s recent works in progress, Lens and Torus, will introduce another
aspect of the code surface: inscription on complex surfaces and its corollary, the
letter becoming its own complex surface. Lens is an interactive QuickTime piece in
which the word “Lens” is literally that – a movable, scalable, seemingly translucent
lens through and on which one can read the four poetic, epigrammatic stanzas of
the work. As Cayley describes it: “by making a letter large enough within the
programmatic structures of lens, the region of colour defining the letter-shape
becomes an entirely different type of surface – it becomes a surface of inscription
for other texts that had been perceived ‘underlying’ it. In doing so, literal surfaces
subvert our experience of space and relative
distance. Surfaces that were ‘in front’ now
form surfaces for other texts.”43 One of the
stanzaic texts in this piece – “the letter is a
threshold” – provides further guidelines for
reading. The letter crosses the threshold
from the two-dimensional space of printed
text to the three-dimensional space of the
virtual word, its volumetric projection in this
work achieved by the shifting of scale. The
material signifier, the form and shape of the
letter, is itself a threshold. The lens is also a threshold in the sense of a portal; that
is, the dynamic word-object “lens” functions as a portal into the text Lens. It is the
functioning within Lens that gives the word “lens” meaning. This, then, is a poem
with a portal into itself: quintessentially technotextual in its self-reflexive
engagement with its own inscription technologies.44 A threshold is also situated
between writer and reader, where both are said to “leave some inkling of the glory
they have seen within the other.” The threshold then bears material traces of reader
and writer. The writer reaches back beyond the letter as a single unit to the other,
and the meaning of ‘other’ fluctuates: the writer and reader are other but so, too, is
the letter.

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

16

Cayley’s critical and aesthetic exploration of the literalizing of the letter continues in
his Cave project Torus (2005-). Like his previous work Translation, Torus
incorporates fragments from English and French editions of Proust’s The Way by
Swann’s and performs continually evolving translations – or symbolic translations
– among English, French, and German versions of excerpts of the text. There are
five textual fragments at any one time on the vanes of the torus; proximity
establishes some relation among them and they are also dynamically altered with
the transliteral letter substitutions that are Cayley’s artistic signature. As with his
previous work, there are moments in the torus when the text is in its “natural
language state,” or, to use the rhetoric of Overboard, when the text is “on the
surface.” At these moments, too, the recitation of the text is quite clear; in other
moments the sounds of the recitations are densely layered and the individual voices
difficult to distinguish. The reader can penetrate to the inside of this three-
dimensional text; she can “seem to be inside an inside,” at which point the text is
silent.45

Cayley has a long-term critical interest in what he calls “writing for complex
surfaces”; and the torus, the donut-shaped, closed surface that is the product of two
circles would be precisely that. Invoking non-Euclidean geometry in a virtual
environment situates the letter in and on a three-dimensional space without edges
or vertices. Cayley points out during a narrated video of the project that “letters in
the Torus have no thickness”; that is, the reader “cannot see their rear surfaces nor
even view them obliquely.” Here the letter is flat but it is inscribed on a surface of
complex folds. We can also contrast the flatness of the letters in Torus with the
volume that words appear to attain in Lens. If words inscribed on the complex
surface of Torus are without depth, words in Lens, by contrast, become themselves
complex surfaces.

7. Black boxing code
I mentioned at the outset that there was a logical tension between, on the one hand,
the discourse of the foundational architecture of code, a “geological computing” that
mines the depths to produce a geology (or a mythology) of surface and, on the other,
the discourse of computational code in terms of inaccessible, inscrutable
processes. I turn now to the question of code as a black box whose inside cannot
be penetrated and begin with the pursuit of universal translatability, which, we might
agree, is one of the logics of new media. This is transcodification as media theorist
Vilém Flusser articulates it in his Writings [Die Schrift], the translation from one
message into another, the translation from a denoting code, which has a singular
meaning, to a connotating code, which is open and ambiguous.46 Without the

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

17

possibility of transcodification, we would be left with the notion that either a singular,
closed message or a multivalent, open message in some way reflects the natural
order of the world. This is not to say, however, that transcodification is without
limits, that it allows for total transmissibility or that there is a 1:1 correlation between
messages. Rather, as Flusser explains, “one universe may have two or more codes
to communicate messages about it, and that in some codes there may be an
overlap of universes. They are partly translatable into certain codes, and partly not.
And the limitation of translations show that no code refers to all the universes, and
no universe is referred to by all codes” (14). He engages the idea of a metacode in
his Philosophy of Photography, in which he unambiguously proclaims such a
universal, transcendent code impossible: there can be “no ‘final’ program of a ‘final’
apparatus since every program requires a metaprogram by which it is programmed.
The hierarchy of programs is open at the top.”47 Here we might see a clear echo of
Cayley’s treatment of Benjamin and understand again why he has omitted the
transcendental word of God from his transcription.

There can be no metacode or totalizing apparatus situated in an outside, but this
would not preclude our recognition that the apparatus remains a black box and in
this sense ultimately unknowable.48 Functionaries control and are controlled by it,
but its interior remains impenetrable. A comprehensive overview from a position of
topsight is impossible and the smallest particles are also inaccessible:
“apparatuses that, on the one hand, assume gigantic size, threatening to disappear
from our field of vision (like the apparatus of management), and, on the other, shrivel
up, becoming microscopic in size so as to totally escape our grasp (like the chips in
electronic apparatuses)” (PP 21). What Flusser makes apparent is that the interior,
the black box, is not only impenetrable but also not subject to modification.49 There
is thus something indeterminable about the photographic apparatus in Flusser’s
analysis, something within the black box that cannot be manipulated. His analysis
of the unknowable, indeterminate apparatus strongly correlates with Friedrich
Kittler’s critique of the GUI as a “system of secrecy” that hides “a whole machine
from its users” by concealing its depths or bottom layers.50 During “the descent
from software to hardware,” then, we move “from higher to lower levels of
observation [that] could be continued over more and more orders of magnitude”
(150).

In the introduction of assembly and machine codes, we have lost a great deal: our
capacity to see and alter the functioning of the mechanism and thus in a certain
sense our capacity to grasp the entirety of our writing practices, the sum total of
actions initiated and completed by a single keystroke.51 Recognizing that the
bottom layers are not simply concealed behind a curtain that has only to be thrust
aside in order for us to see the wizardry underneath, Kittler nonetheless points to
the conscious construction of such a barrier: “these layers, which like modern
media technologies in general, have been explicitly contrived in order to evade all

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

18

perception. We simply do not know what our writing does” (148). Again, what we
cannot reconstruct, what we “simply do not know,” is the precise sequence of
human and machinic processes that result in our seeing our own words appear on
a screen before us. In his reading of Kittler, Mackenzie has recourse to the rhetoric
of “backgrounding” with respect to code’s invisibility, both in a technical sense and
with respect to its embedding as ideology within the social fabric. It is invisible
because it functions within “inaccessible interior spaces” over which no “panoptic
view” can be made available (25, 28). This is a problem not only of space but also
of time. Analogizing the hierarchy of programming languages to one-way functions
in mathematical cryptography, Kittler explains that “such functions, when used in
their straightforward form, can be computed in reasonable time, for instance, in a
time growing only in polynomial expressions with the function’s complexity. The
time needed for its inverse form, however (that is, for reconstructing from the
function’s output its presupposed input), would grow at exponential and therefore
unviable rates. One-way functions, in other words, hide an algorithm from its result”
(151). Whether conceived as “secret,” “inaccessible,” or an imperceptible
background element, the ‘deep’ layers of software, the bottom floors of the tower of
the programming languages, elude our cognitive reach. Matthew Fuller is on the
same page as Kittler when he notes that “the axiomatics that channel and produce
the behaviour necessary for use of computers happen at both human and
subscopic scale,” which is to say that we can produce a coherent and empirically
grounded media archaeology of new media writing with respect to the GUI but such
an archaeology would come up against a certain limit at the “lower levels of
observation.”52 The representation of codes, whether binary, assembly, or high-level,
can therefore only ever be that: a representation of what is happening at the
machine level.

The opacity of code holds true even at the pragmatic level of programming. This is
partly the result of the massive proliferation of coding languages – “code babble” as
Mackenzie names it (25). But it also results from issues of programming style that
mean, as Alan Sondheim notes, that “you’d have to be the author to follow it.”53
Katherine Hayles has a statement that thoroughly documents the extent to which
code is opaque even (or especially) to those who write it:

people who have spent serious time programming will testify that nothing is
more difficult than to decipher code that someone else has written and
insufficiently documented; for that matter, code that one writes oneself can
also become mysterious when enough time has passed. Since large
programs – say, Microsoft Word – are written by many programmers and
portions of the code are recycled from one version to another, no living
person understands the programs in their totality….In the case of evolutionary
algorithms where the code is not directly written by a human but evolved

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

19

through variation and selection procedures carried out by the machine, the
difficulty of understanding the code is so notorious as to be legendary.54

Code may be mysterious, cryptic, and in a sense unknowable, but it is, as Warnell’s
“Lascaux Symbol.ic” reminds us, made. Analogizing the cave painting to code,
“Lascaux” reminds us that the hand – craft, skill, technical expertise – comes in
between code and surfaces of inscription, here the wall of the cave. Code may in a
general sense be opaque and legible only to specialists, much like a cave painting’s
sign system, but it has been inscribed, programmed, written. It is conditioned and
concretely historical. Whether or not non-human agents have had a ‘hand’ in its
formulation, code remains not only a constructing force but also that which is
constructed. Mackenzie has a variation on this insight: “Code can be read as
permeated by all the forms of contestation, feeling, identification, intensity,
contextualizations and decontextualizations, signification, power relations,
imaginings and embodiments that comprise any cultural object” (CC 5).

In Flusser’s typology, there are three types of codes: visual (alphabetic), auditory
(spoken language, music), and mixed audiovisual (theater, televisual). These codes
then have three structures: diachronical, the ordering in linear sequence, such as is
the case with languages and alphabets; synchronical, the ordering on surfaces, as
is the case with ideogrammatic writing; and the three-dimensional synchronical,
which is ordered in space, as is the case with architecture (W 15). The late twentieth
century has brought about a crisis, Flusser suggests, in that writing in the
diachronical sense of “lining-up of letters and other writing signs” faces a planned
obsolescence. Less convenient for storage, less adept at transmitting information
than the new codes, “the codes of writing, like the Egyptian hieroglyphs, or the Indian
knots” are likely to be “put aside,” to give way to the codes that improve the
production, circulation, and reception of knowledge. Kittler puts this even more
starkly: “we do not write anymore,” he announces, writing’s “last historical act” the
design of the first microprocessor on blueprint paper (147). “At its alphabetic
beginning, a camel and its Hebraic letter gamel were just two and a half orders of
decimal magnitude apart,” but now, “our writing scene may well be defined by a self-
similarity of letters over some six orders of decimal magnitude” (147). On or around
1968, the year of ruptures, writing in the sense of manipulating alphabetic letters on
a page comes not only to be hidden but to disappear. While writing seems to have
no future, it is nonetheless associated with a historical consciousness, in fact brings
that consciousness into being. Since writing is linked to historical consciousness,
code is by implication linked to post-historical consciousness. The possibility of
transcodification, of converting ‘older’ media forms into codes, presents writing not
only with the taint of its own obsolescence but also with two routes away from itself
– back to the image or forward to the code, “back to the imagination or forward into
calculation.” What Flusser’s Writings suggest, however, is that “these two directions
can merge surprisingly into one another: figures can be computed to images. From

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

20

textual writing/thinking we can try to escape into imagined calculations.”55 It is
toward this possible future for writing that Ted Warnell’s visual poetry and John
Cayley’s transliteral projects gesture.

Notes

1. CODeDOC show curated by Christiane Paul (September 2002),
http://artport.whitney.org/commissions/codedoc/index.shtml. A related text is
Robert Nideffer’s, The Fine Art of Appropriation (UCSB, 1997), which met uni-
versity requirements for a printed and bound MFA thesis by submitting the
HTML code used to produce his visual artwork and therein posing compelling
questions about code as both mechanism and object of knowledge.

2. Not only a nice reversal of ‘laptop,’ TOPLAP is an acronym for (Tempo-
rary|Transnational|Terrestrial|Transdimensional) Organisation for the (Promo-
tion|Proliferation|Permanence|Purity) of Live (Algorithm|Audio|Art|Artistic) Pro-
gramming). See http://toplap.org/.

3. Lawrence Lessig, Code and Other Laws of Cyberspace (New York: Basic Books,
1999).

4. As just one example of the critical investigation of e-waste, see Lisa Parks, “Fall-
ing Apart: Electronics Salvaging and the Global Media Economy,” Residual Me-
dia, ed. Charles Acland (Minneapolis: University of Minnesota Press, 2006).

5. “Only!4!!!!!!!!!!!!!!!!!!!!!!4-for YOUR Private Eyes. A structural analysis of
http://www.jodi.org,” http://www.hgb-leip-
zig.de/ARTNINE/huber/writings/jodie/indexe.html

6. Mark Amerika, “Active/onBlur: An Interview with Talan Memmott,”
http://trace.ntu.ac.uk/newmedia/interview.cfm

7. http://www.desvirtual.com/thebook/english/epigrafe.htm

8. http://www.desvirtual.com/giselle/english/prologue.htm

9. The incorporation of elements of coding languages is present in print as well.
Two recent examples: Salvador Plascencia’s People of Paper presents binary
code as readable language and Mark Z. Danielewski’s new novel, Only Revolu-
tions, brings the double pipe into play as a cryptic shorthand for his title (OR).

10. http://www.kanonmedia.com/news/nml/code.htm

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

21

11. Also see Katherine Hayles’s analysis of print and digital textuality in terms of
metaphors of surface and depth in “Print is Flat, Code is Deep: The Importance
of Media-Specific Analysis,” Poetics Today (Fall 2001). For exploration of the
architectural idea of “deep surface” in the context of new media, see Stuart
Moulthrop, Deep Surface and Lev Manovich, The Language of New Media, 31-
34.

12. See http://www.desvirtual.com/thebook/english/text.htm

13. Fuller, “Visceral Facades: Taking Matta-Clark’s Crowbar to Software” (1997),
http://bak.spc.org/iod/Visceral.html. All subsequent excerpts from Fuller are
taken from this essay (no pagination). On I/O/D’s Web Stalker, see Josephine
Berry, “Bare Code: Net Art and the Free Software Movement,” http://netartcom-
mons.walkerart.org/article.pl?sid=02/05/08/0615215&mode=thread

14. http://nodel.org/orgs.php?ID=99

15. Personal email, February 21, 2006.

16. Peter Naur and Brian Randell, eds., Software Engineering: Report on a confer-
ence sponsored by the NATO Science Committee, Garmisch, Germany, 7th to
11th October 1968 (Brussels: NATO, 1969). Also see the d’Agapeyeff’s inverted
pyramid (23).

17. Peter Naur and Brian Randell, eds., Software Engineering: Report on a confer-
ence sponsored by the NATO Science Committee, Garmisch, Germany, 7th to
11th October 1968 (Brussels: NATO, 1969).

18. JavaScript Guide for JavaScript 1.1 http://wp.netscape.com/eng/mozilla/
3.0/handbook/javascript/getstart.htm#1006443.

19. http://en.wikipedia.org/wiki/JavaScript

20. The image appears to have been taken from the ceiling of the Axial Gallery. See
Virtual Lascaux, http://www.culture.gouv.fr/culture/arcnat/lascaux/img/da-
plafond.jpg. For a fuller description of the cave paintings, see Georges Bataille,
Lascaux, or the Birth of Art, trans. Austryn Wainhouse (Lausanne: Skira, 1955).
The text-only version of Warnell’s poem was part of an online exhibition, Our
Digital Lascaux, curated by Jennifer Ley (July 2000). Available from
http://www.heelstone.com/lascaux.

21. Ley similarly notes that “our digital handprints cover the walls of this, our com-
mon Lascaux.” http://www.heelstone.com/lascaux/about.html

22. Warnell explains that he had in mind this particular cultural context. Personal
email, April 14, 2006.

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

22

23. This idea might be profitably compared to Geoff Cox, Alex McLean, and Adrian
Ward, “The Aesthetics of Generative Code,” which comments on the inconse-
quential, prosaic execution of many code poems, such as those written in Perl.
See http://www.generative.net/papers/aesthetics.

24. Ellen Ullman, “Elegance and Entropy: Ellen Ullman Talks with Scott Rosenberg
About What Makes Programmers Tick,” Salon (October 9, 1997),
http://www.salon1999.com/21st/feature/1997/10/09interview.html.

25. See Friedrich Kittler, “Protected Mode,” Literature, Media, Information Systems:
Essays by Friedrich A. Kittler, ed. John Johnston (Amsterdam: G&B Arts Inter-
national, 1997); Raley, “Machine Translation and Global English,” The Yale Jour-
nal of Criticism 16:2 (Fall 2003).

26. Steidl, “If () Then (),” digitalcraft exhibition, “I love you - computer_vi-
ruses_hacker_culture” (2003), http://www.digitalcraft.org/?artikel_id=293.

27. Katherine Hayles, My Mother Was a Computer: Digital Subjects and Literary
Texts (Chicago: University of Chicago Press, 2005); Adrian Mackenzie, Cutting
Code: Software and Sociality (New York, Peter Lang, 2006).

28. Alan Liu writes extensively of virus art in these terms in The Laws of Cool:
Knowledge Work and the Culture of Information (Chicago: University of Chicago
Press, 2004).

29. Mateas and Montfort, “A Box, Darkly: Obfuscation, Weird Languages, and Code
Aesthetics,” DAC paper (2005). In contrast, Florian Cramer’s Word Made Flesh:
Code, Culture, Imagination (Rotterdam: Piet Zwart Institute 2005) asks whether
execution is a process particular to the computer. Available from
http://pzwart.wdka.hro.nl/mdr/research/fcramer/wordsmadeflesh/.

30. http://artport.whitney.org/commissions/codedoc/galloway.shtml

31. See “The Performativity of Code: Software and Cultures of Circulation,” Theory,
Culture & Society 22:1 (2005), 71-92.

32. Cayley, “Overboard: An Example of Ambient Time-Based Poetics in Digital Art,”
dictung-digital 2 (2004), http://www.dichtung-digital.com/2004/2-Cayley.htm.

33. See Cayley, “Literal Art,” First Person: New Media as Story, Performance, Game,
eds. Noah Wardrip-Fruin and Pat Harrigan, republished in electronic book re-
view (2004), http://www.electronicbookreview.com/thread/firstperson/pro-
grammatology. Also see Cayley, “Inner Workings: Code and Representations of
Interiority in New Media Poetics,” dictung-digital 3 (2003), http://www.dichtung-
digital.com/2003/issue/3/Cayley.htm.

34. Cayley persuasively argues that the “digital instantiation” of his work makes for
substantive, “non-trivial differences” between his text-generation procedures

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

23

and those of Emmett Williams, Mac Low and Cage, which achieve a relative
fixity through print: “any aleatory of ‘chance operation’ aspect of such work is
only fully realized in a publication medium which actually displays immediate
results of the aleatory procedure(s). Such works should, theoretically, never be
the same from one reading to the next (except by extraordinary chance)” (“Be-
yond Codexspace” 173).

35. For a contemporary instance of procedural text generation that works with soft-
ware, see Jim Carpenter, “Electronic Text Composition Project,” Slought Foun-
dation, http://slought.org. The ETC project “uses a probability-based approach
to constructing syntactic constituents,” which, “absent authorial intent and di-
vorced from any underlying message, assume their status as poems only as
they are read.” As with Cayley, legibility in a general sense is insured on the side
of production.

36. This is to emphasize a stark contrast (which, though obvious, is still useful) be-
tween the dynamic movement of the letters in Cayley’s piece and the kinetic
visual poetry of writers such as Brian Kim Stephans and Ana Maria Uribe who
work in authoring environments such as Flash.

37. Cayley, “Overboard: An Example of Ambient Time-Based Poetics in Digital Art.”

38. Personal email, February 14, 2006.

39. All published versions of the project and description available from
http://www.shadoof.net/in/translation.html.

40. “On Language as Such and the Language of Man,” Walter Benjamin: Selected
Writings, Volume 1, 1913-1926 (Harvard UP, 1996), excerpted text pp. 69-70.

41. The following line – “The translation of the language of things into that of man
is not only a translation of the mute into the sonic” – bears an interesting rela-
tion to the generative sounds of Translation.

42. Jakobson’s thinking on the “Linguistic Aspects of Translation” – that “the mean-
ing of any linguistic sign is its translation into some further, alternative sign” –
would also be a precursor to this operative theory of translation (56).

43. Project description of Lens available from http://homepage.mac.com/sha-
doof/lens/lens.html.

44. See Katherine Hayles on technotext in Writing Machines. Janet Zweig’s flip-
book Sheherezade (1988) uses magnification to produce a similar portal-effect.
Finally, a typology of words and letters as spaces would include illuminated
manuscripts, pop-up books, and even the Narnia chronicles.

45. See the QT video with voice-over narration, available from shadoof.net. This is
soon to be replaced by a video online at TIRW (August 2006).

Dichtung Digital. Journal für Kunst und Kultur digitaler Medien

24

46. Writings, trans. Erik Eisel (Minneapolis: University of Minnesota Press, 2002).

47. Flusser, Towards a Philosophy of Photography, trans. Anthony Mathews (Lon-
don: Reaktion, 2000), 29.

48. “Apparatuses are black boxes that simulate thinking in the sense of a combina-
tory game using number-like symbols; at the same time, they mechanize this
thinking in such a way that, in future, human beings will become less and less
competent to deal with it and have to rely more and more on apparatuses. Ap-
paratuses are scientific black boxes that carry out this type of thinking better
than human beings because they are better at playing (more quickly and with
fewer errors) with number-like symbols” (PP 32).

49. Also see Michael Hardt and Antonio Negri on FOSS: “Since proprietary software
owned by corporations does not expose its source code, the proponents of
open source maintain that not only can users not see how the software works
but they also cannot identify its problems or modify it to work better” Multitude
(New York: Penguin, 2004), 302.

50. “There Is No Software,” Literature, Media, Information Systems: Essays by Frie-
drich A. Kittler, ed. John Johnston (Amsterdam: G&B Arts International, 1997),
151. All subsequent references are to this essay.

51. On the other side of this question, Gene Kan writes of the advantages of
Gnutella as operating on the surface, requiring little specialist knowledge for
basic use.

52. Ibid.

53. Email communication, “essay on codework” (February 2, 2004).

54. “Traumas of Code,” Critical Inquiry (Fall 2006), xx.

55. Afterword.

	Code.surface || Code.depth
	Abstract
	1. Code.surface || Code.depth
	2. Lascaux.Symbol.ic
	3. Reading code
	4. Overboard
	5. Translation
	6. Writing for complex surfaces
	7. Black boxing code
	Notes

