
Repositorium für die Medienwissenschaft

Anders Fagerjord
The Cloud, the Store, and Millions of Apps
2015
https://doi.org/10.25969/mediarep/1052

Veröffentlichungsversion / published version
Sammelbandbeitrag / collection article

Empfohlene Zitierung / Suggested Citation:
Fagerjord, Anders: The Cloud, the Store, and Millions of Apps. In: Irina Kaldrack, Martina
Leeker (Hg.): There is no software, there are just services. Lüneburg: meson press 2015, S. 91–
101. DOI: https://doi.org/10.25969/mediarep/1052.

Nutzungsbedingungen: Terms of use:
Dieser Text wird unter einer Creative Commons -
Namensnennung - Weitergabe unter gleichen Bedingungen 4.0
Lizenz zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz
finden Sie hier:
https://creativecommons.org/licenses/by-sa/4.0

This document is made available under a creative commons -
Attribution - Share Alike 4.0 License. For more information see:
https://creativecommons.org/licenses/by-sa/4.0

https://mediarep.org
https://doi.org/10.25969/mediarep/1052
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

The Cloud, the Store, and
Millions of Apps

Anders Fagerjord

The 1.5 million apps for the iPhone can be used
for thousands of purposes. Many are cloud-based
services, even more are games and simple utilities.
The idea of Software as a Service is to have one
instance of a program running on a central server,
and only one browser to access these programs.
From mobile devices it is more effective to access
services from apps than from browsers, meaning
that every user will need many apps. Moreover, hard-
ware sensors are equally or more important to apps
than cloud access. Rather than thinking of apps as
software services, we should describe them as actors
in a network where developers, users, and Apple’s
hardware, programming environment and App Store
are important parts.

“The Web is Dead” was the slogan that covered the entire front
page of Wired in August, 2010. Mobile apps provide “simpler,
sleeker services that just work,” editor Chris Anderson wrote
(2010b). Tim O’Reilly responded that “it ’s the backend that
matters,” pointing to the fact that popular services like Twitter,
Google, or Facebook are run in large server centres which can be
reached from web sites and native apps alike (Anderson 2010a).
These servers, called the cloud, are used by many of the most
popular apps. We store our documents and data in the cloud,
sometimes sharing it in social networks, sometimes keeping it
private. They are available to us from any screen we use, from the
little telephone and the mid-sized tablet to the desktop computer
and even the 50-inch TV screen. We still call them telephones and
TVs, but we use them for the same services. It is the cloud, the
backend, that matters, it seems.

Parts of the cloud, or some clouds to be more precise, are
Software as a Service (SaaS) sites, where users can access
computer systems running in central data centres. Instead of
installing the software on their own machines, users access the
systems through a web page. In my university, I file my travel
expenses in one web site, read and write formal correspondence
in another, and write drafts of papers with colleagues in Google
Docs, which is also a web site. All are accessible from a thin client,
my Web browser. As the thin client already is in my computer
(and virtually all other computers) I only need to keep that one
program up to date, and do not need to install and upgrade a
lot of others. It is presumably easier for me, and it saves the
university’s computer department the work with purchasing
upgrades and distributing them to all employees. The main
system exists in only one instalment in the data centre, and may
be updated at any time, without the need to distribute copies to
all users.

Most of the time, however, I find that the web sites are slow and
generally difficult to use. I often long for “simpler, sleeker services
that just work,” to borrow Anderson’s words once more.

93While desktop computers increasingly are used to access remote
software via a Web browser, mobile platforms are used without
the browser, instead favoring a myriad of native apps. We will
untangle this somewhat in the following, and realize early that
the cloud is a nice, simple metaphor for a complex actor network.
A short essay like this can hardly treat one network, let alone
several competing networks, so I will focus on apps made for
Apple’s iOS, running on iPhones and iPads.

To describe a complex network like this, we need to be careful
in the use of words, especially as a term may be understood
differently by different sets of actors.

For a programmer, an app is an abbreviation for any application
program. Here, we will use app as in a more restricted sense,
which we believe is more in line with everyday language: an app is
a small program for a mobile device, downloaded from a central
distributor, an app store.

The term service is crucial for a book on SaaS. Here, we will have
to move away from the everyday understanding of service,
and limit it to the use within Service-oriented Architecture (SOA)
engineering, as defined by The Open Group:

A service is a logical representation of a repeatable business
activity that has a specified outcome (e.g., check customer
credit, provide weather data, consolidate drilling reports,
etc.) and: is self-contained, may be composed of other
services, is a ‘black box’ to consumers of the service. (The
Open Group 2013)

It should be added that these services are made available over
a computer network. Are apps made of services, being just thin
clients, gateways to the clouds? The truth is that some are, but far
from all. To understand apps, we need to realize they are actors
in a network that we will try to describe in the following.

94 Coordinating Sensors

Sweeping generalisations about apps are common, but an app
can be most anything, from simple a utility to a complex game.
Apple’s App Store contains map applications, medical diagnostic
tools, exercise journals, recipe books and diet journals, banking
apps and bus ticket apps, unit converters, calculators and the
simple flashlight. The only common aspect seems to be the
device: Apps are software applications for mobile devices. Let us
then begin the description of the app networks with the iPhone
itself.

When the iPhone was introduced, Apple announced it as three
new devices combined: An e-mail device, a music player, and a
phone (Apple 2007). We may still tend to think of the iPhone as
a remediation (Bolter and Grusin 1999) of the telephone, but the
technical specification of an iPhone makes it very clear that it is
much more. It is a pocket-sized computer with several network
connections: GSM telephony, 801.11 Wi-fi, Bluetooth, USB, and in
the 2014 models even Near-Field Communication (Apple 2014a).

Input can be given via the high-resolution touch screen, a
microphone and camera on both the front and the back the
phone, and a few buttons. Output is given through the screen,
three loudspeakers, a vibrator, or a powerful LED light, and
more loudspeakers and screens can be connected with wires.
It is important not to forget the sensors: GPS, proximity sensor,
barometer, an accelerometer, a three-way gyroscope for compass
and movement, an ambient light sensor, and a fingerprint
scanner in some models.

An iPhone app is a small program that uses some of these net­
work connections, input/output and sensors for a purpose the
user finds useful or entertaining. An app can make calculations,
based on input from the user or the sensors, send and receive
data over a network, and output the results to the user, and
simultaneously send the results over a network. The most

95popular apps are in fact thin clients for Web services, such as
Facebook and Google Maps. They use the network extensively,
and most calculations are performed on the remote server, “in
the cloud”. But other popular apps, for example Angry Birds,
perform calculations on the iPhone, and use the touch screen
and the loudspeakers of the iPhone for interaction. Yet other
apps rely on other sensors, such as Sleep Cycle which uses the
accelerometer to monitor how the users move while sleeping,
or VitalSigns which calculates the pulse and breathing rate of
the person in front of the camera by analysing the image. The
2014 Apple Design Award winner Device 6 is an interactive story
midway between a game and a book, using only the touch screen
and the loudspeakers, while Flashlight uses only the touch screen
to switch the LED flash on and off. Sleep Cycle, VitalSigns, Device
6, and Flashlight do not communicate with any server, they run in
isolation on the iPhone.

To state that there is no software, only services, would be to
narrow down this multitude to only a few kinds of apps. I find
Liestøl’s perspective more fruitful: That we are moving into the
age of sensory media (Liestøl et al. 2012). I believe this transition
needs to be studied extensively, but for this essay, we need to
move on in our description of the network; from the apps running
on the device to the app developers and the environment they
work in.

Here be Software

Kittler received some attention for the provocative article title
“There is no Software” (Kittler 1992), where he argues the many
layers of computer software are only masking the underlying
hardware of the computer. In all its technological determinism,
the article is mainly a critique of modern computers’ Cartesian
foundation. Kittler could code in several programming languages,
and knew very well that software is the quite tangible result of
labour, often tremendous labour. Its layered structure makes this

96 labour more efficient, and instead of analysing it away, a software
studies approach should focus on these different layers, and see
how power is distributed throughout.

One does not design an app by combining web services. Apps for
iOS can only be made with Apple’s XCode programming environ­
ment for Macintosh computers. It includes two languages and
70 different frameworks programmers can draw on, including
interface buttons and other elements, cloud storage in Apple’s
server parks, a database system, graphics engines for 2D and
3D development, and interfaces to other parts of iOS, such as
notifications, address book, calendar, maps, camera, and photo
editing software. These frameworks are similar to services both
in being standardised design patterns that developers can rely on
through a relatively simple interface, and in being “black boxes”,
as developers do not need to understand their inner workings.

There are frameworks to support all the three main operations
we outlined above; local calculations, access to the sensors ,
and access to Apple’s cloud services. Programmers may earn
money by using Apple’s frameworks for purchases within the app
through App Store’s payment service, and for banner ads inside
the app. Cloud storage in Apple’s iCloud is available through
another framework, and sharing via Facebook and Twitter is done
via yet another.

XCode is a powerful actor in the network: It regulates what can
be done, what is simple to do, and what simply can’t be done,
and thus has power over its developers. Zittrain uses the iPhone
as a prime example of a “tethered” device that can be remotely
controlled by its manufacturers, in opposition to a “generative”
device that can be made to do anything (Zittrain 2008, chap. 2–3).
This division is too simple. Apple can control some aspects of
iPhones through software updates, and some of the frameworks
and services that developers may use can be remotely controlled.
Developers have still found the freedom to create 1.5 million apps
available in the US store, which seems quite generative. Apple’s

97frameworks rarely lock developers in, but they provide roads of
less resistance. Large corporations like Facebook operate their
own services that their apps use. Smaller developers will have
to develop their own services, or they can take the simpler route
and use Apple’s. Rather than using a dichotomy of generative/
tethered, we should follow Kittler’s example (if not his con­
clusions) and study the degrees of freedom available through the
software layers.

Software as a Service is often pictured as an architecture that
makes programming simple. Apparently, developers do not
need to code, just assemble different services, like a child con­
necting Lego bricks. Programming for iOS programming is a far
way from this. Just to create the traditional beginners’ “hello
world” message requires a list of different files, most of which
are unintelligible for a beginner. 500 million iPhones have been
sold (Costello 2014), only 350 000 of the owners have registered
as developers, and many of these developers (we do not know
how many) have never uploaded an app to App Store. One could
imagine a phone so easy to program that users would create
a flashlight app, not download one, but the iPhone is not that
product.

App Store: The Obligatory Passage Point

Just as XCode is the only programming environment, Apple has
a monopoly on distribution; developers can’t just send apps to
their friends. To test a new app on an actual iPhone, the devel­
oper must purchase a $99 per year license from Apple (Apple
2014b). The app can be tested on a few devices only, and can only
be distributed further via Apple’s App Store. This is the main
node in the iOS network we are describing, and what Callon (1986)
would describe as an “obligatory passage point.”

App Store contained close to 1.5 million apps at the end of 2014.
It is a place for small businesses, as discussed by Snickars (2012)

98 and Flueckiger (2012), although major services power the most
popular apps (App Annie).

Apple reviews every app before it is allowed into the App Store,
and the “App Store Review Guidelines” (Apple 2015) contain 179
rules. Apple controls that apps are reliable, safe, and consis­
tent with the iPhone interface guidelines. Apple also protects its
market position, and “apps or metadata that mentions the name
of any other mobile platform will be rejected” (rule 3.1). Violence,
racism, sex, medical advice and mentions of drug, alcohol, or
nicotine use are all strictly governed. This has spurred a debate
on censorship, as witnessed by the Wikipedia page “Censorship
by Apple” (Wikipedia contributors 2015).

Apple collects a fee for every review. Approved apps can be dis­
tributed for free, or the developer can choose to sell it, in which
case Apple keeps 30 percent of the revenue. To download an
app, users must submit their private Apple ID and password, and
charge paid apps to the credit card associated with the account.

Apple is by far the strongest power in these meetings with devel­
opers, software, registration fees and credit card companies,
these “trials of strength” (Latour 1988). Developers also have
power, however. The iPhone had not been the success it is
without this tremendous creativity on the part of the developers,
as Snickars (2012) has shown. Users on their side judge, one by
one, which apps they want to install and use, which is no small
power, as the competition for downloads is strong. When users
choose which apps to keep, they arbitrate in the trials of strength
between the other actors.

Mobility and Ubiquity: Clients and Clouds

We have drawn a quick sketch of the app network, indicating
some power relations. We now can return to the question of
SaaS. App development is not mashing up services by the inex­
perienced. Still, apps may connect to Facebook, Twitter, Google’s

99many services, and personal storage clouds like Evernote or
DropBox. This is ubiquitous computing: Your data is always with
you; the clouds are always over your head. But the idea of the
one thin client for all software is lost. Although the mobile phone
is powerful it is too slow for the advanced client-side scripts
that modern web services use. Mobile telephony networks
are also much slower than broadband connections in desktop
computers. Efficiency is a major reason to create an app rather
than using the telephone’s web browser. Apple’s Objective-c is
more efficient than JavaScript, and gives the developer more con­
trol over the many software frameworks and hardware sensors.
Another reason is the tiny screen: The browser has a few lines of
user interface (known as “chrome”) that eat up precious space.
Facebook on the Safari browser is shown with the address bar on
top and the back button and other controls on the bottom. The
Facebook app can use the whole screen, and is at the same time
more efficient.

Cloud computing on the phone is not one, but many thin clients.
Each of these must be installed and kept up to date, and while the
App Store software can notice users of available updates, SaaS's
main promise of no installs, no upgrades is lost.

Conclusion

Apps will not kill the Web. While there are some overlaps between
web sites and apps, there is a considerable number of apps that
never have been, and never will be web services. Anderson’s
point is that a lot of what is now available as commercial services
on the web, such as news and social media, can be delivered
more efficiently and reliably on apps tailor-made for each plat­
form. It should not be a surprise that the media industry is what
is most visible from Anderson’s perspective as an editor of a print
magazine. Amateur participation is for Zittrain and others the
strength of the Web, and the one aspect that makes it a unique
technology.

100 Amateurs make many apps, but most apps are probably made by
professional programmers in their spare time. To create an app
is to enter a network of, Apple’s programming languages and the
Xcode application, Apple’s approval service, Apple’s App Store,
users, and the iPhone itself.

Apps are more than services, they are applications that put the
iPhone’s computing facilities, network connections, sensors and
output devices to use for purposes that do not provoke Apple,
and that users find meaningful.

I would like to thank Anders Sundnes Løvlie, Frode Guribye,
Kjartan Michalsen, and Johannes M. Ringheim for insightful
discussions. The Department of Media and Information Science,
University of Bergen kindly lent me the office space where I wrote
this text.

Bibliography

Anderson, Chris. 2010a. “The Web Is Dead? A Debate.” Wired, September 17.
Accessed December 19, 2014. http://www.wired.com/magazine/2010/08/
ff_webrip_debate/.

Anderson, Chris. 2010b. “The Web is Dead: Long Live The Internet.” Wired,
September 17. Accessed May 27, 2015. http://www.wired.com/2010/08/ff_webrip.

App Annie. “iOS Top App Charts.” Accessed April 14, 2015. https://www.appannie.
com/apps/ios/top/?_ref=header&device=iphone.

Apple. 2007. “Apple Reinvents the Phone With the Iphone.” Apple Press Info, January
9. Accessed December 19, 2014. https://www.apple.com/pr/library/2007/01/09­
Apple-Reinvents-the-Phone-with-iPhone.html.

Apple. 2014a. “Iphone 6: Technical Specifications.” Apple iPhone. Accessed December
19, 2014. http://www.apple.com/iphone-6/specs/.

Apple. 2014b. “iOS Developer Program.” Apple Developer. Accessed December 19,
2014. https://developer.apple.com/programs/ios/.

Apple. 2015. “App Store Review Guidelines.” Apple Developer. Accessed April 14, 2015.
https://developer.apple.com/app-store/review/guidelines/.

Bolter, Jay David, and Richard Grusin. 1999. Remediation: Understanding New Media.
Cambridge, MA: MIT Press.

101Callon, Michel. 1986. “Some Elements of a Sociology of Translation: Domestication
of the Scallops and the Fishermen of St Brieuc Bay.” In Power, Action and Belief: A
New Sociology of Knowledge?, edited by John Law, 196–223. London: Routledge.

Costello, Sam. 2014. “How Many Iphones Have Been Sold Worldwide?” about tech.
Accessed December 19, 2014. http://ipod.about.com/od/glossary/f/how-many-
iphones-sold.htm.

Flueckiger, Barbara. 2012. “The Iphone Apps: A Digital Culture of Interactivity.” In
Moving Data: The Iphone and the Future of Media, edited by Pelle Snickars and
Patrick Vonderau, 171–183. New York: Columbia University Press.

Kittler, Friedrich. 1992. “There is no Software.” Stanford Literature Review 9 (1): 81–90.
Latour, Bruno. 1988. The Pasteurization of France. Cambridge, MA: Harvard University

Press.
Liestøl, Gunnar, Anne Doksrød, Šarunas Ledas, and Terje Rasmussen. 2012.

“Sensory Media: Multidisciplinary Approaches in Designing a Situated & Mobile
Learning Environment for Past Topics.” International Journal of Interactive Mobile
Technologies 6 (3): 24–28.

Snickars, Pelle. 2012. “A Walled Garden Turned Into a Rainforest.” In Moving Data: The
Iphone and the Future of Media, edited by Pelle Snickars, and Patrick Vonderau,
New York, NY: Columbia University Press.

The Open Group. 2013. “Using TOGAF to Define and Govern SOAs: Service-Oriented
Archtecture Defined.” The SOA Source Book. Accessed May 27, 2015. https://www.
opengroup.org/soa/source-book/togaf/soadef.htm.

Wikipedia contributors, “Censorship by Apple.” Wikipedia: The Free Encyclopedia.
Last modified February 22, 2015, 14:04 CET. Accessed April 14, 2015. http://
en.wikipedia.org/w/index.php?title=Censorship_by_Apple&oldid=648325693.

Zittrain, Jonathan L. 2008. The Future of the Internet and How to Stop it. New Haven,
CT: Yale University Press.

