Article:
Visual Tactics Toward an Ethical Debugging

dc.creatorGriffiths, Catherine
dc.date.accessioned2020-03-10T10:07:25Z
dc.date.available2020-03-10T10:07:25Z
dc.date.issued2018
dc.description.abstractTo advance design research into a critical study of artificially intelligent algorithms, strategies from the fields of critical code studies and data visualisation are combined to propose a methodology for computational visualisation. By opening the algorithmic black box to think through the meaning created by structure and process, computational visualisation seeks to elucidate the complexity and obfuscation at the heart of artificial intelligence systems. There are rising ethical dilemmas that are a consequence of the use of machine learning algorithms in socially sensitive spaces, such as in determining criminal sentencing, job performance, or access to welfare. This is in part due to the lack of a theoretical framework to understand how and why decisions are made at the algorithmic level. The ethical implications are becoming more severe as such algorithmic decision-making is being given higher authority while there is a simultaneous blind spot in where and how biases arise. Computational visualisation, as a method, explores how contemporary visual design tactics including generative design and interaction design, can intersect with a critical exegesis of algorithms to challenge the black box and obfuscation of machine learning and work toward an ethical debugging of biases in such systems.en
dc.identifier.doi10.25969/mediarep/13533
dc.identifier.urihttp://digicults.org/files/2019/11/dcs-2018-0113.pdf
dc.identifier.urihttps://mediarep.org/handle/doc/14459
dc.languageeng
dc.publishertranscript
dc.publisher.placeBielefeld
dc.relation.isPartOfissn:2364-2114
dc.relation.ispartofseriesDigital Culture & Society
dc.rightsCreative Commons Attribution Non Commercial No Derivatives 4.0 Generic
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectCritical Code Studiesen
dc.subjectdata visualisationen
dc.subjectdataen
dc.subjectvisualisationen
dc.subjectalgorithmen
dc.subjectethicsen
dc.subjectDatende
dc.subjectVisualisierungde
dc.subjectDatenvisualisierungde
dc.subjectAlgorithmusde
dc.subjectEthikde
dc.subject.ddcddc:003
dc.subject.ddcddc:006
dc.titleVisual Tactics Toward an Ethical Debuggingen
dc.typearticle
dc.type.statuspublishedVersion
dspace.entity.typeArticleen
local.coverpage2021-05-29T02:32:49
local.identifier.firstpublishedhttp://digicults.org/files/2019/11/dcs-2018-0113.pdf
local.source.epage226
local.source.issue1
local.source.issueTitleRethinking AI
local.source.spage217
local.source.volume4

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DIGITAL-CULTURE-AND-SOCIETY_4_1_2018_217-226_Griffiths_Visual_Tactics_Toward_an_Ethical_Debugging_.pdf
Size:
222.16 KB
Format:
Adobe Portable Document Format
Description:
Original PDF with additional cover page.